These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19366262)

  • 41. Asymmetric synthesis of cis-5-tert-butylproline with metal carbenoid NH insertion.
    Davis FA; Yang B; Deng J
    J Org Chem; 2003 Jun; 68(13):5147-52. PubMed ID: 12816469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterolytic splitting of hydrogen with rhodium(I) amides.
    Maire P; Büttner T; Breher F; Le Floch P; Grützmacher H
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6318-23. PubMed ID: 16172994
    [No Abstract]   [Full Text] [Related]  

  • 43. Holding onto lots of hydrogen: a 12-hydride rhodium cluster that reversibly adds two molecules of H2.
    Brayshaw SK; Ingleson MJ; Green JC; Raithby PR; Kociok-Köhn G; McIndoe JS; Weller AS
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6875-8. PubMed ID: 16206315
    [No Abstract]   [Full Text] [Related]  

  • 44. Pyrazolyl-N-heterocyclic carbene complexes of rhodium as hydrogenation catalysts: The influence of ligand steric bulk on catalyst activity.
    Page MJ; Wagler J; Messerle BA
    Dalton Trans; 2009 Sep; (35):7029-38. PubMed ID: 20449145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coordination effects on electron distributions for rhodium complexes of the redox-active bis(3,5-di-tert-butyl-2-phenolate)amide ligand.
    Szigethy G; Shaffer DW; Heyduk AF
    Inorg Chem; 2012 Dec; 51(23):12606-18. PubMed ID: 22482509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and reactivity of rhodium(II) N-triflyl azavinyl carbenes.
    Grimster N; Zhang L; Fokin VV
    J Am Chem Soc; 2010 Mar; 132(8):2510-1. PubMed ID: 20131915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic borylation of SCF₃-functionalized arenes by rhodium(I) boryl complexes: regioselective C-H activation at the ortho-position.
    Kalläne SI; Braun T
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9311-5. PubMed ID: 25088814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species.
    Serna P; Gates BC
    J Am Chem Soc; 2011 Apr; 133(13):4714-7. PubMed ID: 21391590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.
    Panish R; Selvaraj R; Fox JM
    Org Lett; 2015 Aug; 17(16):3978-81. PubMed ID: 26241081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 1,2-migration in rhodium(II) carbene transfer reaction: remarkable steric effect on migratory aptitude.
    Xiao F; Wang J
    J Org Chem; 2006 Jul; 71(15):5789-91. PubMed ID: 16839167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin.
    Abe S; Hirata K; Ueno T; Morino K; Shimizu N; Yamamoto M; Takata M; Yashima E; Watanabe Y
    J Am Chem Soc; 2009 May; 131(20):6958-60. PubMed ID: 19453195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodium(NHC)-catalyzed amination of aryl bromides.
    Kim M; Chang S
    Org Lett; 2010 Apr; 12(7):1640-3. PubMed ID: 20205466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterolytic cleavage of hydrogen molecule by rhodium thiolate complexes that catalyze chemoselective hydrogenation of imines under ambient conditions.
    Misumi Y; Seino H; Mizobe Y
    J Am Chem Soc; 2009 Oct; 131(41):14636-7. PubMed ID: 19824724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rhodium-catalyzed enantioselective intramolecular C-H silylation for the syntheses of planar-chiral metallocene siloles.
    Zhang QW; An K; Liu LC; Yue Y; He W
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6918-21. PubMed ID: 25907416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers.
    Skander M; Malan C; Ivanova A; Ward TR
    Chem Commun (Camb); 2005 Oct; (38):4815-7. PubMed ID: 16193124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Programmable site-selective labeling of oligonucleotides based on carbene catalysis.
    Lee YH; Yu E; Park CM
    Nat Commun; 2021 Mar; 12(1):1681. PubMed ID: 33727561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The structural and functional roles of rhodium(II)-rhodium(II) dimers in multinuclear ruthenium(II) complexes.
    Cooke MW; Hanan GS; Loiseau F; Campagna S; Watanabe M; Tanaka Y
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4881-4. PubMed ID: 15995992
    [No Abstract]   [Full Text] [Related]  

  • 59. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.
    Chen Z; Vohidov F; Coughlin JM; Stagg LJ; Arold ST; Ladbury JE; Ball ZT
    J Am Chem Soc; 2012 Jun; 134(24):10138-45. PubMed ID: 22621321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of an internal trifluoromethyl group on the rhodium(II)-catalyzed reactions of vinyldiazocarbonyl compounds.
    Nikolaev VA; Supurgibekov MB; Davies HM; Sieler J; Zakharova VM
    J Org Chem; 2013 May; 78(9):4239-44. PubMed ID: 23614681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.