BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 19366507)

  • 1. The use of ultraviolet resonance Raman spectroscopy in the analysis of ionizing-radiation-induced damage in DNA.
    Shaw CP; Jirasek A
    Appl Spectrosc; 2009 Apr; 63(4):412-22. PubMed ID: 19366507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Raman spectroscopic study on the influence of ultraviolet radiation on calf thymus DNA in aqueous solution].
    Zhou DF; Ke WZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1370-2. PubMed ID: 15762479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy.
    Zhao X; Lu D; Jiang S; Mao C; Fan Y; An C; Li Z
    Sci China B; 1995 May; 38(5):555-63. PubMed ID: 7626197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of Raman spectra of guanine-cytosine Watson-Crick and protonated Hoogsteen base pairs.
    Morari CI; Muntean CM
    Biopolymers; 2003; 72(5):339-44. PubMed ID: 12949824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance raman spectroscopy.
    Wen ZQ; Overman SA; Thomas GJ
    Biochemistry; 1997 Jun; 36(25):7810-20. PubMed ID: 9201924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd.
    Wen ZQ; Armstrong A; Thomas GJ
    Biochemistry; 1999 Mar; 38(10):3148-56. PubMed ID: 10074370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of influences of different intervals of ultraviolet irradiation on calf thymus studied by Raman spectroscopy].
    Tang YL; Guo ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):653-7. PubMed ID: 16836132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy.
    Overman SA; Bondre P; Maiti NC; Thomas GJ
    Biochemistry; 2005 Mar; 44(8):3091-100. PubMed ID: 15723554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the DNA damage lesion 8-oxoguanosine from ultraviolet resonance Raman spectroscopy.
    Jayanth N; Ramachandran S; Puranik M
    J Phys Chem A; 2009 Feb; 113(8):1459-71. PubMed ID: 19191520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method for the microscopic, nondestructive acquisition of ultraviolet resonance Raman spectra from plant cell walls.
    Czaja AD; Kudryavtsev AB; Schopf JW
    Appl Spectrosc; 2006 Apr; 60(4):352-5. PubMed ID: 16613629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modelling of radiolytic damage of free DNA bases and within DNA macromolecule.
    Stepán V; Davídková M
    Radiat Prot Dosimetry; 2006; 122(1-4):110-2. PubMed ID: 17229783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of different levels of vitamin C on UV radiation-induced DNA damage].
    Zhou DF; Ke WZ; Chen NF; Ji K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):2012-5. PubMed ID: 16544495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray radiation-induced damage in DNA monitored by online Raman.
    McGeehan JE; Carpentier P; Royant A; Bourgeois D; Ravelli RB
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):99-108. PubMed ID: 17211076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of high energy proton radiation--Raman spectroscopic character of microcosmic damage in the space structure of DNA.
    Xu YM; Zhang ZY; Zhao KJ; Zhang ZL; Liu CX; Wang DH; Xu GR; Zheng YZ
    Sci China B; 1993 Nov; 36(11):1325-32. PubMed ID: 8142021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-state structural dynamics of cytosine from resonance Raman spectroscopy.
    Billinghurst BE; Loppnow GR
    J Phys Chem A; 2006 Feb; 110(7):2353-9. PubMed ID: 16480294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.
    Christesen SD; Pendell Jones J; Lochner JM; Hyre AM
    Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light.
    Nelson WH; Dasari R; Feld M; Sperry JF
    Appl Spectrosc; 2004 Dec; 58(12):1408-12. PubMed ID: 15606952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage.
    Wei H; Ca Q; Rahn R; Zhang X; Wang Y; Lebwohl M
    Biochemistry; 1998 May; 37(18):6485-90. PubMed ID: 9572866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics.
    López-Díez EC; Goodacre R
    Anal Chem; 2004 Feb; 76(3):585-91. PubMed ID: 14750850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The presence of two modes of binding to calf thymus DNA by metal-free bleomycin: a low frequency Raman study.
    Rajani C; Kincaid JR; Petering DH
    Biopolymers; 1999; 52(3):129-46. PubMed ID: 11169381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.