These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19366598)

  • 21. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition.
    Heimburg T
    Biophys J; 2000 Mar; 78(3):1154-65. PubMed ID: 10692305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.
    Ge M; Freed JH
    Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs.
    Lewis RN; Pohle W; McElhaney RN
    Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perturbation of the chain melting transition of DPPC by galactose, agarose and Laurdan as determined by differential scanning calorimetry.
    Abrams SB; Yager P
    Biochim Biophys Acta; 1993 Feb; 1146(1):127-35. PubMed ID: 8443219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tamoxifen perturbs lipid bilayer order and permeability: comparison of DSC, fluorescence anisotropy, laurdan generalized polarization and carboxyfluorescein leakage studies.
    Engelk M; Bojarski P; Bloss R; Diehl H
    Biophys Chem; 2001 Apr; 90(2):157-73. PubMed ID: 11352274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence.
    Parasassi T; Ravagnan G; Rusch RM; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):403-10. PubMed ID: 8475171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
    Picardi MV; Cruz A; Orellana G; Pérez-Gil J
    Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saturation transfer, continuous wave saturation, and saturation recovery electron spin resonance studies of chain-spin labeled phosphatidylcholines in the low temperature phases of dipalmitoyl phosphatidylcholine bilayers. Effects of rotational dynamics and spin-spin interactions.
    Fajer P; Watts A; Marsh D
    Biophys J; 1992 Apr; 61(4):879-91. PubMed ID: 1316181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes.
    Parasassi T; Gratton E; Yu WM; Wilson P; Levi M
    Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.
    Vaughn AR; Bell TA; Gibbons E; Askew C; Franchino H; Hirsche K; Kemsley L; Melchor S; Moulton E; Schwab M; Nelson J; Bell JD
    Biochim Biophys Acta; 2015 Apr; 1848(4):942-50. PubMed ID: 25559316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.