These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 19366695)

  • 21. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1.
    Kawachi M; Kobae Y; Kogawa S; Mimura T; Krämer U; Maeshima M
    FEBS J; 2012 Jul; 279(13):2339-56. PubMed ID: 22520078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the zinc transporter YiiP.
    Lu M; Fu D
    Science; 2007 Sep; 317(5845):1746-8. PubMed ID: 17717154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histidine residues in the region between transmembrane domains III and IV of hZip1 are required for zinc transport across the plasma membrane in PC-3 cells.
    Milon B; Wu Q; Zou J; Costello LC; Franklin RB
    Biochim Biophys Acta; 2006 Oct; 1758(10):1696-701. PubMed ID: 16844077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zinc Transporter Proteins.
    Baltaci AK; Yuce K
    Neurochem Res; 2018 Mar; 43(3):517-530. PubMed ID: 29243032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism.
    Kambe T; Tsuji T; Hashimoto A; Itsumura N
    Physiol Rev; 2015 Jul; 95(3):749-84. PubMed ID: 26084690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LIV-1 breast cancer protein belongs to new family of histidine-rich membrane proteins with potential to control intracellular Zn2+ homeostasis.
    Taylor KM
    IUBMB Life; 2000 Apr; 49(4):249-53. PubMed ID: 10995024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli.
    Anton A; Weltrowski A; Haney CJ; Franke S; Grass G; Rensing C; Nies DH
    J Bacteriol; 2004 Nov; 186(22):7499-507. PubMed ID: 15516561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of the zinc binding domain in cytosolic PSD-95 interactor (cypin): Role of zinc binding in guanine deamination and dendrite branching.
    Fernández JR; Welsh WJ; Firestein BL
    Proteins; 2008 Feb; 70(3):873-81. PubMed ID: 17803218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The SLC39 family of zinc transporters.
    Jeong J; Eide DJ
    Mol Aspects Med; 2013; 34(2-3):612-9. PubMed ID: 23506894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters.
    Zogzas CE; Mukhopadhyay S
    Metallomics; 2018 Aug; 10(8):1053-1064. PubMed ID: 29989630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored protein expression.
    Wagatsuma T; Shimotsuma K; Sogo A; Sato R; Kubo N; Ueda S; Uchida Y; Kinoshita M; Kambe T
    J Biol Chem; 2022 Jun; 298(6):102011. PubMed ID: 35525268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: a molecular modeling and fluorescence spectroscopy study.
    Castelli S; Stella L; Petrarca P; Battistoni A; Desideri A; Falconi M
    Biochem Biophys Res Commun; 2013 Jan; 430(2):769-73. PubMed ID: 23206707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for pH dependent Zn2+influx in K562 erythroleukemia cells: studies using ZnAF-2F fluorescence and 65Zn2+ uptake.
    Colvin RA; Fontaine CP; Thomas D; Hirano T; Nagano T; Kikuchi K
    Arch Biochem Biophys; 2005 Oct; 442(2):222-8. PubMed ID: 16183033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells.
    Pan CY; Lin FY; Kao LS; Huang CC; Liu PS
    PLoS One; 2020; 15(9):e0232729. PubMed ID: 32915786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling the structural elements of pH sensitivity and substrate binding in the human zinc transporter SLC39A2 (ZIP2).
    Gyimesi G; Albano G; Fuster DG; Hediger MA; Pujol-Giménez J
    J Biol Chem; 2019 May; 294(20):8046-8063. PubMed ID: 30914478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmembrane helix 6b links proton and metal release pathways and drives conformational change in an Nramp-family transition metal transporter.
    Bozzi AT; McCabe AL; Barnett BC; Gaudet R
    J Biol Chem; 2020 Jan; 295(5):1212-1224. PubMed ID: 31882536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport.
    Zhang T; Kuliyev E; Sui D; Hu J
    Biochem J; 2019 Jun; 476(12):1791-1803. PubMed ID: 31164399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delineation of an endogenous zinc-binding site in the human dopamine transporter.
    Norregaard L; Frederiksen D; Nielsen EO; Gether U
    EMBO J; 1998 Aug; 17(15):4266-73. PubMed ID: 9687495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions.
    Vandenberg RJ; Mitrovic AD; Johnston GA
    Mol Pharmacol; 1998 Jul; 54(1):189-96. PubMed ID: 9658205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.