These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19366929)

  • 1. Evidence for costs of mating and self-fertilization in a simultaneous hermaphrodite with hypodermic insemination, the Opisthobranch Alderia willowi.
    Smolensky N; Romero MR; Krug PJ
    Biol Bull; 2009 Apr; 216(2):188-99. PubMed ID: 19366929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal polyphenism in larval type: rearing environment influences the development mode expressed by adults in the sea slug Alderia willowi.
    Krug PJ; Gordon D; Romero MR
    Integr Comp Biol; 2012 Jul; 52(1):161-72. PubMed ID: 22576812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia.
    Ellingson RA; Krug PJ
    Evolution; 2006 Nov; 60(11):2293-310. PubMed ID: 17236422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide signaling differentially affects habitat choice by two larval morphs of the sea slug Alderia willowi: mechanistic insight into evolutionary transitions in dispersal strategies.
    Romero MR; Phuong MA; Bishop C; Krug PJ
    J Exp Biol; 2013 Mar; 216(Pt 6):1114-25. PubMed ID: 23197096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precopulatory stabbing, hypodermic injections and unilateral copulations in a hermaphroditic sea slug.
    Anthes N; Michiels NK
    Biol Lett; 2007 Apr; 3(2):121-4. PubMed ID: 17251120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poecilogony and population genetic structure in Elysia pusilla (Heterobranchia: Sacoglossa), and reproductive data for five sacoglossans that express dimorphisms in larval development.
    Vendetti JE; Trowbridge CD; Krug PJ
    Integr Comp Biol; 2012 Jul; 52(1):138-50. PubMed ID: 22659202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypodermic self-insemination as a reproductive assurance strategy.
    Ramm SA; Schlatter A; Poirier M; Schärer L
    Proc Biol Sci; 2015 Jul; 282(1811):. PubMed ID: 26136446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mating behavior and reproductive morphology predict macroevolution of sex allocation in hermaphroditic flatworms.
    Brand JN; Harmon LJ; Schärer L
    BMC Biol; 2022 Feb; 20(1):35. PubMed ID: 35130880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence, costs and heritability of delayed selfing in a free-living flatworm.
    Ramm SA; Vizoso DB; Schärer L
    J Evol Biol; 2012 Dec; 25(12):2559-68. PubMed ID: 23110716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mating behaviour in the sea slug Elysia timida (Opisthobranchia, Sacoglossa): hypodermic injection, sperm transfer and balanced reciprocity.
    Schmitt V; Anthes N; Michiels NK
    Front Zool; 2007 Jul; 4():17. PubMed ID: 17610714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural female mating rate maximizes hatchling size in a marine invertebrate.
    Sprenger D; Faber J; Michiels NK; Anthes N
    J Anim Ecol; 2008 Jul; 77(4):696-701. PubMed ID: 18298520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Not my "type": larval dispersal dimorphisms and bet-hedging in opisthobranch life histories.
    Krug PJ
    Biol Bull; 2009 Jun; 216(3):355-72. PubMed ID: 19556600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary links between reproductive morphology, ecology and mating behavior in opisthobranch gastropods.
    Anthes N; Schulenburg H; Michiels NK
    Evolution; 2008 Apr; 62(4):900-16. PubMed ID: 18208568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Size Advantage Model of Sex Allocation in the Protandrous Sex-Changer Crepidula fornicata: Role of the Mating System, Sperm Storage, and Male Mobility.
    Broquet T; Barranger A; Billard E; Bestin A; Berger R; Honnaert G; Viard F
    Am Nat; 2015 Sep; 186(3):404-20. PubMed ID: 26655357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominance of outcrossing in Lymnaea stagnalis despite low apparent fitness costs of self-fertilization.
    Puurtinen M; Emily Knott K; Suonpää S; Nissinen K; Kaitala V
    J Evol Biol; 2007 May; 20(3):901-12. PubMed ID: 17465901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed selfing in relation to the availability of a mating partner in the cestode Schistocephalus solidus.
    Schjørring S
    Evolution; 2004 Nov; 58(11):2591-6. PubMed ID: 15612301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative view of sexual selection in Tribolium flour beetles.
    Fedina TY; Lewis SM
    Biol Rev Camb Philos Soc; 2008 May; 83(2):151-71. PubMed ID: 18429767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of mating-system evolution in hermaphroditic animals: correlations among selfing rate, inbreeding depression, and the timing of reproduction.
    Escobar JS; Auld JR; Correa AC; Alonso JM; Bony YK; Coutellec MA; Koene JM; Pointier JP; Jarne P; David P
    Evolution; 2011 May; 65(5):1233-53. PubMed ID: 21521187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evolution of sperm count in protandrous self-fertilizing hermaphrodites.
    Murray RL; Cutter AD
    J Exp Biol; 2011 May; 214(Pt 10):1740-7. PubMed ID: 21525321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High multiple paternity and low last-male sperm precedence in a hermaphroditic planarian flatworm: consequences for reciprocity patterns.
    Pongratz N; Michiels NK
    Mol Ecol; 2003 Jun; 12(6):1425-33. PubMed ID: 12755872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.