BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19367716)

  • 1. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model.
    Bagos PG; Tsirigos KD; Liakopoulos TD; Hamodrakas SJ
    J Proteome Res; 2008 Dec; 7(12):5082-93. PubMed ID: 19367716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lipoprotein signal peptides in Gram-negative bacteria.
    Juncker AS; Willenbrock H; Von Heijne G; Brunak S; Nielsen H; Krogh A
    Protein Sci; 2003 Aug; 12(8):1652-62. PubMed ID: 12876315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of signal peptides in archaea.
    Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ
    Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined prediction of Tat and Sec signal peptides with hidden Markov models.
    Bagos PG; Nikolaou EP; Liakopoulos TD; Tsirigos KD
    Bioinformatics; 2010 Nov; 26(22):2811-7. PubMed ID: 20847219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
    Zou L; Wang Z; Wang Y; Hu F
    Comput Biol Med; 2010 Jul; 40(7):621-8. PubMed ID: 20488436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins.
    Bagos PG; Liakopoulos TD; Spyropoulos IC; Hamodrakas SJ
    BMC Bioinformatics; 2004 Mar; 5():29. PubMed ID: 15070403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models.
    Sgourakis NG; Bagos PG; Papasaikas PK; Hamodrakas SJ
    BMC Bioinformatics; 2005 Apr; 6():104. PubMed ID: 15847681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach.
    Hon LS; Zhang Y; Kaminker JS; Zhang Z
    Hum Mutat; 2009 Jan; 30(1):99-106. PubMed ID: 18570327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics-based consensus prediction of protein retention in a bacterial membrane.
    Tjalsma H; van Dijl JM
    Proteomics; 2005 Nov; 5(17):4472-82. PubMed ID: 16220534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An HMM posterior decoder for sequence feature prediction that includes homology information.
    Käll L; Krogh A; Sonnhammer EL
    Bioinformatics; 2005 Jun; 21 Suppl 1():i251-7. PubMed ID: 15961464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters.
    Dirix G; Monsieurs P; Dombrecht B; Daniels R; Marchal K; Vanderleyden J; Michiels J
    Peptides; 2004 Sep; 25(9):1425-40. PubMed ID: 15374646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI
    Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different sequence patterns in signal peptides from mycoplasmas, other gram-positive bacteria, and Escherichia coli: a multivariate data analysis.
    Edman M; Jarhede T; Sjöström M; Wieslander A
    Proteins; 1999 May; 35(2):195-205. PubMed ID: 10223292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal peptide prediction based on analysis of experimentally verified cleavage sites.
    Zhang Z; Henzel WJ
    Protein Sci; 2004 Oct; 13(10):2819-24. PubMed ID: 15340161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition.
    Yu L; Guo Y; Li Y; Li G; Li M; Luo J; Xiong W; Qin W
    J Theor Biol; 2010 Nov; 267(1):1-6. PubMed ID: 20691704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and prediction of leucine-rich nuclear export signals.
    la Cour T; Kiemer L; Mølgaard A; Gupta R; Skriver K; Brunak S
    Protein Eng Des Sel; 2004 Jun; 17(6):527-36. PubMed ID: 15314210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.