BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19367786)

  • 1. Subsecond reward-related dopamine release in the mouse dorsal striatum.
    Natori S; Yoshimi K; Takahashi T; Kagohashi M; Oyama G; Shimo Y; Hattori N; Kitazawa S
    Neurosci Res; 2009 Apr; 63(4):267-72. PubMed ID: 19367786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes.
    Yoshimi K; Naya Y; Mitani N; Kato T; Inoue M; Natori S; Takahashi T; Weitemier A; Nishikawa N; McHugh T; Einaga Y; Kitazawa S
    Neurosci Res; 2011 Sep; 71(1):49-62. PubMed ID: 21645558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.
    Yoshimi K; Kumada S; Weitemier A; Jo T; Inoue M
    PLoS One; 2015; 10(6):e0130443. PubMed ID: 26110516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.
    Smith SK; Lee CA; Dausch ME; Horman BM; Patisaul HB; McCarty GS; Sombers LA
    ACS Chem Neurosci; 2017 Feb; 8(2):272-280. PubMed ID: 27984698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-regional differences and mechanisms of the short-term plasticity of dopamine overflow in striatum in mice lacking alpha-synuclein.
    Chadchankar H; Yavich L
    Brain Res; 2011 Nov; 1423():67-76. PubMed ID: 22000591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics.
    Robinson DL; Heien ML; Wightman RM
    J Neurosci; 2002 Dec; 22(23):10477-86. PubMed ID: 12451147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine denervation of specific striatal subregions differentially affects preparation and execution of a delayed response task in the rat.
    Florio T; Capozzo A; Nisini A; Lupi A; Scarnati E
    Behav Brain Res; 1999 Oct; 104(1-2):51-62. PubMed ID: 11125742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless voltammetry recording in unanesthetised behaving rats.
    Kagohashi M; Nakazato T; Yoshimi K; Moizumi S; Hattori N; Kitazawa S
    Neurosci Res; 2008 Jan; 60(1):120-7. PubMed ID: 17983679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.
    Klanker M; Fellinger L; Feenstra M; Willuhn I; Denys D
    Neuroscience; 2017 Mar; 345():110-123. PubMed ID: 27185487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.
    Nakazato T
    Exp Brain Res; 2005 Sep; 166(1):137-46. PubMed ID: 16028033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of fast cyclic voltammetry to measurement of electrically evoked dopamine overflow from brain slices in vitro.
    Bull DR; Palij P; Sheehan MJ; Millar J; Stamford JA; Kruk ZL; Humphrey PP
    J Neurosci Methods; 1990 Apr; 32(1):37-44. PubMed ID: 2139913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltammetric study of the control of striatal dopamine release by glutamate.
    Borland LM; Michael AC
    J Neurochem; 2004 Oct; 91(1):220-9. PubMed ID: 15379902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetry of extracellular dopamine in rat striatum during ICSS-like electrical stimulation of the medial forebrain bundle.
    Young SD; Michael AC
    Brain Res; 1993 Jan; 600(2):305-7. PubMed ID: 8435753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats.
    Garris PA; Christensen JR; Rebec GV; Wightman RM
    J Neurochem; 1997 Jan; 68(1):152-61. PubMed ID: 8978721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity.
    Natsubori A; Tsutsui-Kimura I; Nishida H; Bouchekioua Y; Sekiya H; Uchigashima M; Watanabe M; de Kerchove d'Exaerde A; Mimura M; Takata N; Tanaka KF
    J Neurosci; 2017 Mar; 37(10):2723-2733. PubMed ID: 28167674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking.
    Fraser KM; Janak PH
    Eur J Neurosci; 2017 Aug; 46(4):2047-2055. PubMed ID: 28699296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phasic dopamine signaling during behavior, reward, and disease states.
    Heien ML; Wightman RM
    CNS Neurol Disord Drug Targets; 2006 Feb; 5(1):99-108. PubMed ID: 16613556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
    Parker NF; Cameron CM; Taliaferro JP; Lee J; Choi JY; Davidson TJ; Daw ND; Witten IB
    Nat Neurosci; 2016 Jun; 19(6):845-54. PubMed ID: 27110917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.
    Kishida KT; Saez I; Lohrenz T; Witcher MR; Laxton AW; Tatter SB; White JP; Ellis TL; Phillips PE; Montague PR
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):200-5. PubMed ID: 26598677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.