BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19367871)

  • 1. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study.
    Zhou R; Das P; Royyuru AK
    J Phys Chem B; 2008 Dec; 112(49):15813-20. PubMed ID: 19367871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
    Das P; Li J; Royyuru AK; Zhou R
    J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding.
    Takematsu K; Fukuzawa K; Omagari K; Nakajima S; Nakajima K; Mochizuki Y; Nakano T; Watanabe H; Tanaka S
    J Phys Chem B; 2009 Apr; 113(15):4991-4. PubMed ID: 19323468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy simulations reveal that both hydrophobic and polar interactions are important for influenza hemagglutinin antibody binding.
    Xia Z; Huynh T; Kang SG; Zhou R
    Biophys J; 2012 Mar; 102(6):1453-61. PubMed ID: 22455929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conserved sequences for human neutralization epitope on hemagglutinin of influenza A viruses H3N2, H1N1 and H5N1: Implication for human monoclonal antibody recognition.
    Yamashita A; Kawashita N; Kubota-Koketsu R; Inoue Y; Watanabe Y; Ibrahim MS; Ideno S; Yunoki M; Okuno Y; Takagi T; Yasunaga T; Ikuta K
    Biochem Biophys Res Commun; 2010 Mar; 393(4):614-8. PubMed ID: 20152806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site.
    Fleury D; Barrère B; Bizebard T; Daniels RS; Skehel JJ; Knossow M
    Nat Struct Biol; 1999 Jun; 6(6):530-4. PubMed ID: 10360354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations.
    Sawada T; Fedorov DG; Kitaura K
    J Am Chem Soc; 2010 Dec; 132(47):16862-72. PubMed ID: 21049953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigen distortion allows influenza virus to escape neutralization.
    Fleury D; Wharton SA; Skehel JJ; Knossow M; Bizebard T
    Nat Struct Biol; 1998 Feb; 5(2):119-23. PubMed ID: 9461077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin.
    Abe Y; Takashita E; Sugawara K; Matsuzaki Y; Muraki Y; Hongo S
    J Virol; 2004 Sep; 78(18):9605-11. PubMed ID: 15331693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of amino acid residues of influenza A virus H3 HA contributing to the recognition of molecular species of sialic acid.
    Takahashi T; Hashimoto A; Maruyama M; Ishida H; Kiso M; Kawaoka Y; Suzuki Y; Suzuki T
    FEBS Lett; 2009 Oct; 583(19):3171-4. PubMed ID: 19720062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody.
    Midelfort KS; Hernandez HH; Lippow SM; Tidor B; Drennan CL; Wittrup KD
    J Mol Biol; 2004 Oct; 343(3):685-701. PubMed ID: 15465055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of influenza virus replication fidelity in vitro using selection pressure with monoclonal antibodies.
    Wong KK; Rockman S; Ong C; Bull R; Stelzer-Braid S; Rawlinson W
    J Med Virol; 2013 Jun; 85(6):1090-4. PubMed ID: 23588737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibodies differentially affect the interaction between the hemagglutinin of H9 influenza virus escape mutants and sialic receptors.
    Ilyushina N; Rudneva I; Gambaryan A; Bovin N; Kaverin N
    Virology; 2004 Nov; 329(1):33-9. PubMed ID: 15476872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody.
    Nordman N; Valjakka J; Peräkylä M
    Proteins; 2003 Jan; 50(1):135-43. PubMed ID: 12471606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines.
    Ndifon W; Wingreen NS; Levin SA
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8701-6. PubMed ID: 19439657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alphavirus replicon particle vaccines developed for use in humans induce high levels of antibodies to influenza virus hemagglutinin in swine: proof of concept.
    Erdman MM; Kamrud KI; Harris DL; Smith J
    Vaccine; 2010 Jan; 28(3):594-6. PubMed ID: 19853679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method.
    Iwata T; Fukuzawa K; Nakajima K; Aida-Hyugaji S; Mochizuki Y; Watanabe H; Tanaka S
    Comput Biol Chem; 2008 Jun; 32(3):198-211. PubMed ID: 18485828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies.
    Wang W; Butler EN; Veguilla V; Vassell R; Thomas JT; Moos M; Ye Z; Hancock K; Weiss CD
    J Virol Methods; 2008 Nov; 153(2):111-9. PubMed ID: 18722473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-linked glycans on influenza A H3N2 hemagglutinin constrain binding of host antibodies, but shielding is limited.
    Pentiah K; Lees WD; Moss DS; Shepherd AJ
    Glycobiology; 2015 Jan; 25(1):124-32. PubMed ID: 25227423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry.
    Morrissey B; Streamer M; Downard KM
    J Virol Methods; 2007 Nov; 145(2):106-14. PubMed ID: 17588679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.