These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19367883)

  • 1. Plasmonic nanostructure design for efficient light coupling into solar cells.
    Ferry VE; Sweatlock LA; Pacifici D; Atwater HA
    Nano Lett; 2008 Dec; 8(12):4391-7. PubMed ID: 19367883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
    van Lare C; Lenzmann F; Verschuuren MA; Polman A
    Nano Lett; 2015 Aug; 15(8):4846-52. PubMed ID: 26107806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light trapping in ultrathin plasmonic solar cells.
    Ferry VE; Verschuuren MA; Li HB; Verhagen E; Walters RJ; Schropp RE; Atwater HA; Polman A
    Opt Express; 2010 Jun; 18 Suppl 2():A237-45. PubMed ID: 20588593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays.
    Liberman V; Parameswaran L; Rothschild M; Ait-El-Aoud Y; Luce A; Okamoto M; Willcox WB; Giardini S; Osgood RM
    Nanotechnology; 2018 Sep; 29(38):385206. PubMed ID: 29956677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining 1D and 2D waveguiding in an ultrathin GaAs NW/Si tandem solar cell.
    Tavakoli N; Alarcon-Llado E
    Opt Express; 2019 Jun; 27(12):A909-A923. PubMed ID: 31252864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Truncated titanium/semiconductor cones for wide-band solar absorbers.
    Liu Z; Tang P; Liu X; Yi Z; Liu G; Wang Y; Liu M
    Nanotechnology; 2019 Jul; 30(30):305203. PubMed ID: 30884474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles.
    Spinelli P; Polman A
    Opt Express; 2012 Sep; 20 Suppl 5():A641-54. PubMed ID: 23037531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical impedance matching using coupled plasmonic nanoparticle arrays.
    Spinelli P; Hebbink M; de Waele R; Black L; Lenzmann F; Polman A
    Nano Lett; 2011 Apr; 11(4):1760-5. PubMed ID: 21410242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incident angle dependence of absorption enhancement in plasmonic solar cells.
    Yang M; Fu Z; Lin F; Zhu X
    Opt Express; 2011 Jul; 19 Suppl 4():A763-71. PubMed ID: 21747545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.
    Uhrenfeldt C; Villesen TF; Têtu A; Johansen B; Larsen AN
    Opt Express; 2015 Jun; 23(11):A525-38. PubMed ID: 26072877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over 65% Sunlight Absorption in a 1 μm Si Slab with Hyperuniform Texture.
    Tavakoli N; Spalding R; Lambertz A; Koppejan P; Gkantzounis G; Wan C; Röhrich R; Kontoleta E; Koenderink AF; Sapienza R; Florescu M; Alarcon-Llado E
    ACS Photonics; 2022 Apr; 9(4):1206-1217. PubMed ID: 35480493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.
    Li Q; Du K; Mao K; Fang X; Zhao D; Ye H; Qiu M
    Sci Rep; 2016 Jul; 6():29195. PubMed ID: 27404510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells.
    Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z
    Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.