BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19367896)

  • 1. Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp DNA and differences between polycation and cationic surfactant.
    Humpolícková J; Beranová L; Stĕpánek M; Benda A; Procházka K; Hof M
    J Phys Chem B; 2008 Dec; 112(51):16823-9. PubMed ID: 19367896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study.
    Dias RS; Innerlohinger J; Glatter O; Miguel MG; Lindman B
    J Phys Chem B; 2005 May; 109(20):10458-63. PubMed ID: 16852267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On mechanism of intermediate-sized circular DNA compaction mediated by spermine: contribution of fluorescence lifetime correlation spectroscopy.
    Humpolícková J; Stepánek M; Kral T; Benda A; Procházka K; Hof M
    J Fluoresc; 2008; 18(3-4):679-84. PubMed ID: 18274704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures: macroscopic phase behavior, aggregate properties, and dissolution mechanisms.
    Carlstedt J; Lundberg D; Dias RS; Lindman B
    Langmuir; 2012 May; 28(21):7976-89. PubMed ID: 22546152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA condensation induced by cationic surfactant: a viscosimetry and dynamic light scattering study.
    Marchetti S; Onori G; Cametti C
    J Phys Chem B; 2005 Mar; 109(8):3676-80. PubMed ID: 16851406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of fluorescence correlation spectroscopy in detecting DNA condensation.
    Kral T; Langner M; Benes M; Baczyńska D; Ugorski M; Hof M
    Biophys Chem; 2002 Feb; 95(2):135-44. PubMed ID: 11897152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compaction and decompaction of DNA induced by the cationic surfactant CTAB.
    Grueso E; Cerrillos C; Hidalgo J; Lopez-Cornejo P
    Langmuir; 2012 Jul; 28(30):10968-79. PubMed ID: 22755509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic agents for DNA compaction.
    Gaweda S; Morán MC; Pais AA; Dias RS; Schillén K; Lindman B; Miguel MG
    J Colloid Interface Sci; 2008 Jul; 323(1):75-83. PubMed ID: 18440012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer's length in the interaction surfactant-polynucleotide.
    García JP; Marrón E; Martín VI; Moyá ML; Lopez-Cornejo P
    Colloids Surf B Biointerfaces; 2014 Jun; 118():90-100. PubMed ID: 24736044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding of rabbit serum albumin by cationic surfactants: surface tensiometry, small-angle neutron scattering, intrinsic fluorescence, resonance Rayleigh scattering and circular dichroism studies.
    Ali MS; Gull N; Khan JM; Aswal VK; Khan RH; Kabir-ud-Din
    J Colloid Interface Sci; 2010 Dec; 352(2):436-43. PubMed ID: 20864116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and dynamics of DNA molecules during photoreversible condensation.
    Le Ny AL; Lee CT
    Biophys Chem; 2009 Jun; 142(1-3):76-83. PubMed ID: 19380189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-spermine and DNA-lipid aggregate formation visualized by fluorescence correlation spectroscopy.
    Kral T; Langner M; Hof M
    Chemotherapy; 2006; 52(4):196-9. PubMed ID: 16691028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreversible DNA condensation using light-responsive surfactants.
    Le Ny AL; Lee CT
    J Am Chem Soc; 2006 May; 128(19):6400-8. PubMed ID: 16683804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Concepts and Applications.
    Otosu T; Yamaguchi S
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30441830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence lifetime correlation spectroscopy: Basics and applications.
    Ghosh A; Karedla N; Thiele JC; Gregor I; Enderlein J
    Methods; 2018 May; 140-141():32-39. PubMed ID: 29454862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?
    Ghosh S; Roy A; Banik D; Kundu N; Kuchlyan J; Dhir A; Sarkar N
    Langmuir; 2015 Mar; 31(8):2310-20. PubMed ID: 25643899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence delineation of the surfactant microstructures in the CTAB-sOS-H2O catanionic system.
    Karukstis KK; McCormack SA; McQueen TM; Goto KF
    Langmuir; 2004 Jan; 20(1):64-72. PubMed ID: 15745001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular assembly of a squaraine dye with cationic surfactant and nucleotides: its impact on aggregation and fluorescence response.
    Xu Y; Malkovskiy A; Wang Q; Pang Y
    Org Biomol Chem; 2011 Apr; 9(8):2878-84. PubMed ID: 21373660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup.
    Dias RS; Magno LM; Valente AJ; Das D; Das PK; Maiti S; Miguel MG; Lindman B
    J Phys Chem B; 2008 Nov; 112(46):14446-52. PubMed ID: 18774843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research.
    Benda A; Fagul'ová V; Deyneka A; Enderlein J; Hof M
    Langmuir; 2006 Nov; 22(23):9580-5. PubMed ID: 17073482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.