These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 19367897)
1. CdTe quantum dots as probes for near-infrared fluorescence biosensing using biocatalytic growth of Au nanoparticles. Pan H; Cui R; Zhu JJ J Phys Chem B; 2008 Dec; 112(51):16895-901. PubMed ID: 19367897 [TBL] [Abstract][Full Text] [Related]
2. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Cao L; Ye J; Tong L; Tang B Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902 [TBL] [Abstract][Full Text] [Related]
3. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Xia N; Zhou B; Huang N; Jiang M; Zhang J; Liu L Biosens Bioelectron; 2016 Nov; 85():625-632. PubMed ID: 27240009 [TBL] [Abstract][Full Text] [Related]
4. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay. Priyam A; Chatterjee A; Bhattacharya SC; Saha A Photochem Photobiol Sci; 2009 Mar; 8(3):362-70. PubMed ID: 19255677 [TBL] [Abstract][Full Text] [Related]
5. Modulated exciton-plasmon interactions in Au-SiO2-CdTe composite nanoparticles. Tang L; Xu J; Guo P; Zhuang X; Tian Y; Wang Y; Duan H; Pan A Opt Express; 2013 May; 21(9):11095-100. PubMed ID: 23669965 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric detection of urine glucose using a C/CdTe QDs-GOx aerogel based on a microfluidic assay sensor. Hu T; Xu K; Qiu S; Han Y; Chen J; Xu J; Chen K; Sun Z; Yi H; Ni Z J Mater Chem B; 2020 Aug; 8(32):7160-7165. PubMed ID: 32567624 [TBL] [Abstract][Full Text] [Related]
7. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Jiménez-López J; Rodrigues SSM; Ribeiro DSM; Ortega-Barrales P; Ruiz-Medina A; Santos JLM Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():246-254. PubMed ID: 30641365 [TBL] [Abstract][Full Text] [Related]
8. A novel fluorescent assay for oxytetracycline hydrochloride based on fluorescence quenching of water-soluble CdTe nanocrystals. Gao C; Liu Z; Chen J; Yan Z Luminescence; 2013; 28(3):378-83. PubMed ID: 22715152 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag⁺. Gan TT; Zhang YJ; Zhao NJ; Xiao X; Yin GF; Yu SH; Wang HB; Duan JB; Shi CY; Liu WQ Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():62-8. PubMed ID: 23041923 [TBL] [Abstract][Full Text] [Related]
10. Photoluminescence Quenching of CdTe Quantum Dots Generated via Glutathione-Capped Au Nanocrystals. Zhu Y; Yang P; Miao Y; Cao Y; Yang Y J Nanosci Nanotechnol; 2015 Jun; 15(6):4276-84. PubMed ID: 26369039 [TBL] [Abstract][Full Text] [Related]
11. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. Gao F; Ye Q; Cui P; Zhang L J Agric Food Chem; 2012 May; 60(18):4550-8. PubMed ID: 22443279 [TBL] [Abstract][Full Text] [Related]
12. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Ge S; Lu J; Ge L; Yan M; Yu J Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1704-9. PubMed ID: 21684806 [TBL] [Abstract][Full Text] [Related]
13. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Zhang Y; Li Y; Yan XP Anal Chem; 2009 Jun; 81(12):5001-7. PubMed ID: 19518148 [TBL] [Abstract][Full Text] [Related]
14. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Guo J; Zhang Y; Luo Y; Shen F; Sun C Talanta; 2014 Jul; 125():385-92. PubMed ID: 24840461 [TBL] [Abstract][Full Text] [Related]
15. Sensitive arginine sensing based on inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Liu H; Li M; Jiang L; Shen F; Hu Y; Ren X Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():105-113. PubMed ID: 27599195 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Guo J; Li Y; Wang L; Xu J; Huang Y; Luo Y; Shen F; Sun C; Meng R Anal Bioanal Chem; 2016 Jan; 408(2):557-66. PubMed ID: 26521176 [TBL] [Abstract][Full Text] [Related]
17. H(2) O(2) - and pH-sensitive CdTe quantum dots as fluorescence probes for the detection of glucose. Li Y; Li B; Zhang J Luminescence; 2013; 28(5):667-72. PubMed ID: 22941960 [TBL] [Abstract][Full Text] [Related]
18. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Jin D; Seo MH; Huy BT; Pham QT; Conte ML; Thangadurai D; Lee YI Biosens Bioelectron; 2016 Mar; 77():359-65. PubMed ID: 26433069 [TBL] [Abstract][Full Text] [Related]
19. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Tang B; Cao L; Xu K; Zhuo L; Ge J; Li Q; Yu L Chemistry; 2008; 14(12):3637-44. PubMed ID: 18318025 [TBL] [Abstract][Full Text] [Related]
20. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Liang GX; Pan HC; Li Y; Jiang LP; Zhang JR; Zhu JJ Biosens Bioelectron; 2009 Aug; 24(12):3693-7. PubMed ID: 19493671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]