These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19368161)

  • 1. Is it better to burn or bury waste for clean electricity generation?
    Kaplan PO; Decarolis J; Thorneloe S
    Environ Sci Technol; 2009 Mar; 43(6):1711-7. PubMed ID: 19368161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Change Impacts of Electricity Generated at a Waste-to-Energy Facility.
    Pfadt-Trilling AR; Volk TA; Fortier MP
    Environ Sci Technol; 2021 Feb; 55(3):1436-1445. PubMed ID: 33417433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.
    Townsend AK; Webber ME
    Waste Manag; 2012 Jul; 32(7):1366-77. PubMed ID: 22425189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bury or burn North America MSW? LCAs provide answers for climate impacts & carbon neutral power potential.
    Morris J
    Environ Sci Technol; 2010 Oct; 44(20):7944-9. PubMed ID: 20866062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-Energy plants.
    Fellner J; Cencic O; Rechberger H
    Environ Sci Technol; 2007 Apr; 41(7):2579-86. PubMed ID: 17438819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of greenhouse gas emissions and the feed-in tariff system of waste-to-energy facilities using a system dynamics model.
    Chen YC; Liu HM
    Sci Total Environ; 2021 Oct; 792():148445. PubMed ID: 34147799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing landfill gas (LFG) for electricity: A strategy to mitigate greenhouse gas (GHG) emissions in Jakarta (Indonesia).
    Kurniawan TA; Liang X; Singh D; Othman MHD; Goh HH; Gikas P; Kern AO; Kusworo TD; Shoqeir JA
    J Environ Manage; 2022 Jan; 301():113882. PubMed ID: 34638040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch tests on mineral deposit formation due to co-mingling of leachates derived from municipal solid wastes and waste-to-energy combustion residues.
    Cardoso AJ; Levine AD
    Waste Manag; 2009 Feb; 29(2):820-8. PubMed ID: 18682320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):137-48. PubMed ID: 15737711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact assessment of a WtE plant after structural upgrade measures.
    Passarini F; Nicoletti M; Ciacci L; Vassura I; Morselli L
    Waste Manag; 2014 Apr; 34(4):753-62. PubMed ID: 24484765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.
    Santos MM; van Elk AG; Romanel C
    J Environ Manage; 2015 Dec; 164():151-60. PubMed ID: 26363977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.