These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19368187)

  • 1. Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene.
    Healy RM; Temime B; Kuprovskyte K; Wenger JC
    Environ Sci Technol; 2009 Mar; 43(6):1884-9. PubMed ID: 19368187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary organic aerosol formation from styrene photolysis and photooxidation with hydroxyl radicals.
    Tajuelo M; Rodríguez D; Baeza-Romero MT; Díaz-de-Mera Y; Aranda A; Rodríguez A
    Chemosphere; 2019 Sep; 231():276-286. PubMed ID: 31129409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles.
    Lim YB; Ziemann PJ
    Phys Chem Chem Phys; 2009 Sep; 11(36):8029-39. PubMed ID: 19727510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.
    Rutter AP; Schauer JJ
    Environ Sci Technol; 2007 Jun; 41(11):3934-9. PubMed ID: 17612171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation.
    Chu B; Liu Y; Li J; Takekawa H; Liggio J; Li SM; Jiang J; Hao J; He H
    Environ Pollut; 2014 Oct; 193():88-93. PubMed ID: 25014016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of secondary organic aerosol (SOA) formation during o-, m-, and p-xylene photooxidation.
    Zhang P; Huang J; Shu J; Yang B
    Environ Pollut; 2019 Feb; 245():20-28. PubMed ID: 30408761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.
    Seinfeld JH; Erdakos GB; Asher WE; Pankow JF
    Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.
    Zhao Y; Kreisberg NM; Worton DR; Isaacman G; Weber RJ; Liu S; Day DA; Russell LM; Markovic MZ; VandenBoer TC; Murphy JG; Hering SV; Goldstein AH
    Environ Sci Technol; 2013 Apr; 47(8):3781-7. PubMed ID: 23448102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation.
    Li Y; Zhao J; Wang Y; Seinfeld JH; Zhang R
    Environ Sci Technol; 2021 Jul; 55(13):8592-8603. PubMed ID: 34137267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.
    Li YJ; Cheong GY; Lau AP; Chan CK
    Environ Sci Technol; 2010 Jul; 44(14):5483-9. PubMed ID: 20550185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NOx and SO
    Wang S; Du L; Tsona NT; Jiang X; You B; Xu L; Yang Z; Wang W
    J Environ Sci (China); 2020 Jun; 92():151-162. PubMed ID: 32430118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of relative humidity on SOA formation from aromatic hydrocarbons: Implications from the evolution of gas- and particle-phase species.
    Chen T; Chu B; Ma Q; Zhang P; Liu J; He H
    Sci Total Environ; 2021 Jun; 773():145015. PubMed ID: 33582345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-Particle Partitioning of Carbonyl Compounds in the Ambient Atmosphere.
    Shen H; Chen Z; Li H; Qian X; Qin X; Shi W
    Environ Sci Technol; 2018 Oct; 52(19):10997-11006. PubMed ID: 30153412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambient gas/particle partitioning. 2: The influence of particle source and temperature on sorption to dry terrestrial aerosols.
    Arp HP; Schwarzenbach RP; Goss KU
    Environ Sci Technol; 2008 Aug; 42(16):5951-7. PubMed ID: 18767650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of NO
    Liu S; Wang Y; Xu X; Wang G
    Chemosphere; 2022 Dec; 308(Pt 3):136541. PubMed ID: 36150487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.
    Kavouras IG; Stephanou EG
    Environ Sci Technol; 2002 Dec; 36(23):5083-91. PubMed ID: 12523424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of propene on secondary organic aerosol formation from m-xylene.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Oct; 41(20):6990-5. PubMed ID: 17993138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration.
    Nishino N; Arey J; Atkinson R
    J Phys Chem A; 2010 Sep; 114(37):10140-7. PubMed ID: 20804209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of semivolatile organics and their effects on secondary organic aerosol formation.
    Kroll JH; Chan AW; Ng NL; Flagan RC; Seinfeld JH
    Environ Sci Technol; 2007 May; 41(10):3545-50. PubMed ID: 17547176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary organic aerosol formation from m-xylene in the absence of NOx.
    Song C; Na K; Warren B; Malloy Q; Cocker DR
    Environ Sci Technol; 2007 Nov; 41(21):7409-16. PubMed ID: 18044519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.