These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19368189)

  • 1. Influence of soil minerals on the rates and products of abiotic transformation of carbon tetrachloride in anaerobic soils and sediments.
    Shao H; Butler EC
    Environ Sci Technol; 2009 Mar; 43(6):1896-901. PubMed ID: 19368189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments.
    Shao H; Butler EC
    Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite.
    Hanoch RJ; Shao H; Butler EC
    Chemosphere; 2006 Apr; 63(2):323-34. PubMed ID: 16154172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides.
    Kim S; Picardal FW
    Environ Toxicol Chem; 1999 Oct; 18(10):2142-2150. PubMed ID: 29857631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-Sulfide-Associated Products Formed during Reductive Dechlorination of Carbon Tetrachloride.
    Lan Y; Butler EC
    Environ Sci Technol; 2016 Jun; 50(11):5489-97. PubMed ID: 27138348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Jan; 38(1):260-8. PubMed ID: 14740745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation.
    Elsetinow AR; Schoonen MA; Strongin DR
    Environ Sci Technol; 2001 Jun; 35(11):2252-7. PubMed ID: 11414026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes.
    Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2006 Feb; 40(3):888-93. PubMed ID: 16509333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal.
    Támara ML; Butler EC
    Environ Sci Technol; 2004 Mar; 38(6):1866-76. PubMed ID: 15074701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions.
    McCormick ML; Bouwer EJ; Adriaens P
    Environ Sci Technol; 2002 Feb; 36(3):403-10. PubMed ID: 11871555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite.
    Elsner M; Haderlein SB; Kellerhals T; Luzi S; Zwank L; Angst W; Schwarzenbach RP
    Environ Sci Technol; 2004 Apr; 38(7):2058-66. PubMed ID: 15112807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual element (CCl) isotope approach to distinguish abiotic reactions of chlorinated methanes by Fe(0) and by Fe(II) on iron minerals at neutral and alkaline pH.
    Rodríguez-Fernández D; Heckel B; Torrentó C; Meyer A; Elsner M; Hunkeler D; Soler A; Rosell M; Domènech C
    Chemosphere; 2018 Sep; 206():447-456. PubMed ID: 29758502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.
    Muehe EM; Adaktylou IJ; Obst M; Zeitvogel F; Behrens S; Planer-Friedrich B; Kraemer U; Kappler A
    Environ Sci Technol; 2013; 47(23):13430-9. PubMed ID: 24191747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.
    Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K
    Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.
    Correia RRS; Guimarães JRD
    Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion.
    Choi K; Lee W
    J Hazard Mater; 2009 Dec; 172(2-3):623-30. PubMed ID: 19660864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions.
    Mohatt JL; Hu L; Finneran KT; Strathmann TJ
    Environ Sci Technol; 2011 Jun; 45(11):4793-801. PubMed ID: 21542626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.