BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19368209)

  • 1. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site.
    Nebe J; Baldwin BR; Kassab RL; Nies L; Nakatsu CH
    Environ Sci Technol; 2009 Mar; 43(6):2029-34. PubMed ID: 19368209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites.
    Baldwin BR; Nakatsu CH; Nies L
    Water Res; 2008 Feb; 42(3):723-31. PubMed ID: 17707876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site.
    Baldwin BR; Nakatsu CH; Nebe J; Wickham GS; Parks C; Nies L
    J Hazard Mater; 2009 Apr; 163(2-3):524-30. PubMed ID: 18706759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.
    Chen KF; Kao CM; Chen CW; Surampalli RY; Lee MS
    J Environ Sci (China); 2010; 22(6):864-71. PubMed ID: 20923098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction.
    Dou J; Liu X; Hu Z; Deng D
    J Hazard Mater; 2008 Mar; 151(2-3):720-9. PubMed ID: 17640804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil.
    You Y; Shim J; Cho CH; Ryu MH; Shea PJ; Kamala-Kannan S; Chae JC; Oh BT
    J Basic Microbiol; 2013 May; 53(5):469-75. PubMed ID: 22915285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea.
    Chang SW; La HJ; Lee SJ
    Water Sci Technol; 2001; 44(7):165-71. PubMed ID: 11724483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site.
    Baldwin BR; Biernacki A; Blair J; Purchase MP; Baker JM; Sublette K; Davis G; Ogles D
    Environ Sci Technol; 2010 Sep; 44(17):6829-34. PubMed ID: 20681521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site.
    Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN
    J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indene, indane and naphthalene in a mixture with BTEX affect aerobic compound biodegradation kinetics and indigenous microbial community development.
    Aydin DC; Faber SC; Attiani V; Eskes J; Aldas-Vargas A; Grotenhuis T; Rijnaarts H
    Chemosphere; 2023 Nov; 340():139761. PubMed ID: 37558001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the potential fuel additive isobutanol on benzene, toluene, ethylbenzene, and p-xylene degradation in aerobic soil microcosms.
    Ding L; Cupples AM
    Environ Technol; 2015; 36(1-4):237-44. PubMed ID: 25413118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites.
    Hendrickx B; Dejonghe W; Faber F; Boënne W; Bastiaens L; Verstraete W; Top EM; Springael D
    FEMS Microbiol Ecol; 2006 Feb; 55(2):262-73. PubMed ID: 16420634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1.
    Qu D; Zhao Y; Sun J; Ren H; Zhou R
    Can J Microbiol; 2015 Sep; 61(9):691-9. PubMed ID: 26221863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of MTBE and DCPD compounds relative to BTEX in gasoline-contaminated aquifers.
    Olivella L; Figueras M; Fraile J; Vilanova M; Ginebreda A; Barceló D
    ScientificWorldJournal; 2002 Apr; 2():1108-14. PubMed ID: 12805968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge.
    Huang Y; Li L
    Water Environ Res; 2014 Mar; 86(3):277-84. PubMed ID: 24734475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater.
    Xia Y; Cheng Y; Li L; Chen Y; Jiang Y
    Biodegradation; 2020 Jun; 31(3):213-222. PubMed ID: 32472328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils.
    Dawson JJ; Iroegbu CO; Maciel H; Paton GI
    J Appl Microbiol; 2008 Jan; 104(1):141-51. PubMed ID: 17922829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential removal of benzene, toluene, ethylbenzene, and xylene (BTEX) by persulfate in ethanol-containing aquifer materials.
    Wang H; Chen Y; Meng W; Jiang Y; Cheng Y
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17617-17625. PubMed ID: 34669137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.