These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 19368209)
1. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. Nebe J; Baldwin BR; Kassab RL; Nies L; Nakatsu CH Environ Sci Technol; 2009 Mar; 43(6):2029-34. PubMed ID: 19368209 [TBL] [Abstract][Full Text] [Related]
2. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Baldwin BR; Nakatsu CH; Nies L Water Res; 2008 Feb; 42(3):723-31. PubMed ID: 17707876 [TBL] [Abstract][Full Text] [Related]
3. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. Baldwin BR; Nakatsu CH; Nebe J; Wickham GS; Parks C; Nies L J Hazard Mater; 2009 Apr; 163(2-3):524-30. PubMed ID: 18706759 [TBL] [Abstract][Full Text] [Related]
4. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Deeb RA; Alvarez-Cohen L Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561 [TBL] [Abstract][Full Text] [Related]
5. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Chen KF; Kao CM; Chen CW; Surampalli RY; Lee MS J Environ Sci (China); 2010; 22(6):864-71. PubMed ID: 20923098 [TBL] [Abstract][Full Text] [Related]
6. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. Chen YD; Barker JF; Gui L J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. Dou J; Liu X; Hu Z; Deng D J Hazard Mater; 2008 Mar; 151(2-3):720-9. PubMed ID: 17640804 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. You Y; Shim J; Cho CH; Ryu MH; Shea PJ; Kamala-Kannan S; Chae JC; Oh BT J Basic Microbiol; 2013 May; 53(5):469-75. PubMed ID: 22915285 [TBL] [Abstract][Full Text] [Related]
9. Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea. Chang SW; La HJ; Lee SJ Water Sci Technol; 2001; 44(7):165-71. PubMed ID: 11724483 [TBL] [Abstract][Full Text] [Related]
10. Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. Baldwin BR; Biernacki A; Blair J; Purchase MP; Baker JM; Sublette K; Davis G; Ogles D Environ Sci Technol; 2010 Sep; 44(17):6829-34. PubMed ID: 20681521 [TBL] [Abstract][Full Text] [Related]
11. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480 [TBL] [Abstract][Full Text] [Related]
12. Indene, indane and naphthalene in a mixture with BTEX affect aerobic compound biodegradation kinetics and indigenous microbial community development. Aydin DC; Faber SC; Attiani V; Eskes J; Aldas-Vargas A; Grotenhuis T; Rijnaarts H Chemosphere; 2023 Nov; 340():139761. PubMed ID: 37558001 [TBL] [Abstract][Full Text] [Related]
13. The effect of the potential fuel additive isobutanol on benzene, toluene, ethylbenzene, and p-xylene degradation in aerobic soil microcosms. Ding L; Cupples AM Environ Technol; 2015; 36(1-4):237-44. PubMed ID: 25413118 [TBL] [Abstract][Full Text] [Related]
14. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. Hendrickx B; Dejonghe W; Faber F; Boënne W; Bastiaens L; Verstraete W; Top EM; Springael D FEMS Microbiol Ecol; 2006 Feb; 55(2):262-73. PubMed ID: 16420634 [TBL] [Abstract][Full Text] [Related]
15. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1. Qu D; Zhao Y; Sun J; Ren H; Zhou R Can J Microbiol; 2015 Sep; 61(9):691-9. PubMed ID: 26221863 [TBL] [Abstract][Full Text] [Related]
16. Fate of MTBE and DCPD compounds relative to BTEX in gasoline-contaminated aquifers. Olivella L; Figueras M; Fraile J; Vilanova M; Ginebreda A; Barceló D ScientificWorldJournal; 2002 Apr; 2():1108-14. PubMed ID: 12805968 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Huang Y; Li L Water Environ Res; 2014 Mar; 86(3):277-84. PubMed ID: 24734475 [TBL] [Abstract][Full Text] [Related]
18. A microcosm study on persulfate oxidation combined with enhanced bioremediation to remove dissolved BTEX in gasoline-contaminated groundwater. Xia Y; Cheng Y; Li L; Chen Y; Jiang Y Biodegradation; 2020 Jun; 31(3):213-222. PubMed ID: 32472328 [TBL] [Abstract][Full Text] [Related]
19. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. Dawson JJ; Iroegbu CO; Maciel H; Paton GI J Appl Microbiol; 2008 Jan; 104(1):141-51. PubMed ID: 17922829 [TBL] [Abstract][Full Text] [Related]
20. Preferential removal of benzene, toluene, ethylbenzene, and xylene (BTEX) by persulfate in ethanol-containing aquifer materials. Wang H; Chen Y; Meng W; Jiang Y; Cheng Y Environ Sci Pollut Res Int; 2022 Mar; 29(12):17617-17625. PubMed ID: 34669137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]