These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19368357)

  • 1. Redox-regulated chaperones.
    Kumsta C; Jakob U
    Biochemistry; 2009 Jun; 48(22):4666-76. PubMed ID: 19368357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
    Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U
    J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.
    Segal N; Shapira M
    Plant J; 2015 Jun; 82(5):850-60. PubMed ID: 25892083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
    Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X
    Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox switch that regulates molecular chaperones.
    Conway ME; Lee C
    Biomol Concepts; 2015 Aug; 6(4):269-84. PubMed ID: 26352357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.
    Banerjee M; Chakravarty D; Ballal A
    BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
    Winter J; Ilbert M; Graf PC; Ozcelik D; Jakob U
    Cell; 2008 Nov; 135(4):691-701. PubMed ID: 19013278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae.
    Wholey WY; Jakob U
    Mol Microbiol; 2012 Mar; 83(5):981-91. PubMed ID: 22296329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R; Edinger N; Rimon O; Reichmann D
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone.
    Barbirz S; Jakob U; Glocker MO
    J Biol Chem; 2000 Jun; 275(25):18759-66. PubMed ID: 10764757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
    Graumann J; Lilie H; Tang X; Tucker KA; Hoffmann JH; Vijayalakshmi J; Saper M; Bardwell JC; Jakob U
    Structure; 2001 May; 9(5):377-87. PubMed ID: 11377198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox switch of hsp33 has a novel zinc-binding motif.
    Jakob U; Eser M; Bardwell JC
    J Biol Chem; 2000 Dec; 275(49):38302-10. PubMed ID: 10976105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in
    Aramin S; Fassler R; Chikne V; Goldenberg M; Arian T; Kolet Eliaz L; Rimon O; Ram O; Michaeli S; Reichmann D
    Front Microbiol; 2020; 11():1844. PubMed ID: 32849441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone activity with a redox switch.
    Jakob U; Muse W; Eser M; Bardwell JC
    Cell; 1999 Feb; 96(3):341-52. PubMed ID: 10025400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
    Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D
    Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Peroxiredoxin Family: An Unfolding Story.
    Cao Z; Lindsay JG
    Subcell Biochem; 2017; 83():127-147. PubMed ID: 28271475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum.
    Teixeira F; Castro H; Cruz T; Tse E; Koldewey P; Southworth DR; Tomás AM; Jakob U
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):E616-24. PubMed ID: 25646478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond transcription--new mechanisms for the regulation of molecular chaperones.
    Winter J; Jakob U
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.