BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 19368902)

  • 1. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Manley-Harris M; Molan PC
    Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof.
    Grainger MN; Manley-Harris M; Fauzi NA; Farid MM
    Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Boult CH; Deadman BJ; Farr JM; Grainger MN; Manley-Harris M; Snow MJ
    Carbohydr Res; 2008 Mar; 343(4):651-9. PubMed ID: 18194804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.
    Rückriemen J; Klemm O; Henle T
    Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.
    Mavric E; Wittmann S; Barth G; Henle T
    Mol Nutr Food Res; 2008 Apr; 52(4):483-9. PubMed ID: 18210383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium).
    Rückriemen J; Schwarzenbolz U; Adam S; Henle T
    J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent.
    Williams SD; Pappalardo L; Bishop J; Brooks PR
    J Agric Food Chem; 2018 Oct; 66(42):11133-11140. PubMed ID: 30289260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels.
    Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ
    PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Temporal Apparent C4 Sugar Change in Manuka Honey.
    Chernyshev A; Braggins T
    J Agric Food Chem; 2020 Apr; 68(14):4261-4267. PubMed ID: 32159341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal.
    Oelschlaegel S; Gruner M; Wang PN; Boettcher A; Koelling-Speer I; Speer K
    J Agric Food Chem; 2012 Jul; 60(29):7229-37. PubMed ID: 22676798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional, annual, and individual variations in the dihydroxyacetone content of the nectar of ma̅nuka (Leptospermum scoparium) in New Zealand.
    Williams S; King J; Revell M; Manley-Harris M; Balks M; Janusch F; Kiefer M; Clearwater M; Brooks P; Dawson M
    J Agric Food Chem; 2014 Oct; 62(42):10332-40. PubMed ID: 25277074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.
    Spiteri M; Rogers KM; Jamin E; Thomas F; Guyader S; Lees M; Rutledge DN
    Food Chem; 2017 Feb; 217():766-772. PubMed ID: 27664696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and Reliable HPLC Method for the Simultaneous Determination of Dihydroxyacetone, Methylglyoxal and 5-Hydroxymethylfurfural in Leptospermum Honeys.
    Pappalardo M; Pappalardo L; Brooks P
    PLoS One; 2016; 11(11):e0167006. PubMed ID: 27861622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An updated review of functional ingredients of Manuka honey and their value-added innovations.
    Wang S; Qiu Y; Zhu F
    Food Chem; 2024 May; 440():138060. PubMed ID: 38211407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of Dihydroxyacetone in Australian Leptospermum Nectar via High-Performance Liquid Chromatography.
    Norton AM; McKenzie LN; Brooks PR; Pappalardo LJ
    J Agric Food Chem; 2015 Jul; 63(29):6513-7. PubMed ID: 26140295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.