These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 19369000)

  • 41. Treatment of textile wastewater using a natural flocculant.
    Aboulhassan MA; Souabi S; Yaacoubi A; Baudu M
    Environ Technol; 2005 Jun; 26(6):705-11. PubMed ID: 16035663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production integrated treatment of textile wastewater by closing raw material cycles.
    Krull R
    Water Sci Technol; 2005; 52(10-11):299-307. PubMed ID: 16459804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Treatment of the textile wastewater by combined electrocoagulation.
    Can OT; Kobya M; Demirbas E; Bayramoglu M
    Chemosphere; 2006 Jan; 62(2):181-7. PubMed ID: 15996715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of pulp mill effluent treatment by ozone-based processes.
    Ko CH; Hsieh PH; Chang MW; Chern JM; Chiang SM; Tzeng CJ
    J Hazard Mater; 2009 Sep; 168(2-3):875-81. PubMed ID: 19304380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical removal of phenol from oil refinery wastewater.
    Abdelwahab O; Amin NK; El-Ashtoukhy ES
    J Hazard Mater; 2009 Apr; 163(2-3):711-6. PubMed ID: 18755537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution to the study of electrocoagulation mechanism in basic textile effluent.
    Zaroual Z; Azzi M; Saib N; Chainet E
    J Hazard Mater; 2006 Apr; 131(1-3):73-8. PubMed ID: 16243434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode.
    Koparal AS; Yavuz Y; Gürel C; Oğütveren UB
    J Hazard Mater; 2007 Jun; 145(1-2):100-8. PubMed ID: 17140728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration.
    Malpass GR; Miwa DW; Mortari DA; Machado SA; Motheo AJ
    Water Res; 2007 Jul; 41(13):2969-77. PubMed ID: 17512571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pilot scale nanofiltration membrane separation for waste management in textile industry.
    Koyuncu I; Kural E; Topacik D
    Water Sci Technol; 2001; 43(10):233-40. PubMed ID: 11436786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.
    Khoufi S; Feki F; Sayadi S
    J Hazard Mater; 2007 Apr; 142(1-2):58-67. PubMed ID: 16956717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters.
    Verma AK; Dash RR; Bhunia P
    J Environ Manage; 2012 Jan; 93(1):154-68. PubMed ID: 22054582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.
    Cheng H; Xu W; Liu J; Wang H; He Y; Chen G
    J Hazard Mater; 2007 Jul; 146(1-2):385-92. PubMed ID: 17229523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2009 Oct; 170(2-3):771-8. PubMed ID: 19524357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Treatability studies of textile wastewater on an aerobic fluidized bed biofilm reactor (FABR): a case study.
    Kumar TA; Saravanan S
    Water Sci Technol; 2009; 59(9):1817-21. PubMed ID: 19448318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of multicriteria decision analysis to jar-test results for chemicals selection in the physical-chemical treatment of textile wastewater.
    Aragonés-Beltrán P; Mendoza-Roca JA; Bes-Piá A; García-Melón M; Parra-Ruiz E
    J Hazard Mater; 2009 May; 164(1):288-95. PubMed ID: 18829168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.
    Leiviskä T; Nurmesniemi H; Pöykiö R; Rämö J; Kuokkanen T; Pellinen J
    Water Res; 2008 Aug; 42(14):3952-60. PubMed ID: 18707750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories.
    Boroski M; Rodrigues AC; Garcia JC; Gerola AP; Nozaki J; Hioka N
    J Hazard Mater; 2008 Dec; 160(1):135-41. PubMed ID: 18417286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A combined electrocoagulation-electrooxidation treatment for industrial wastewater.
    Linares-Hernández I; Barrera-Díaz C; Bilyeu B; Juárez-GarcíaRojas P; Campos-Medina E
    J Hazard Mater; 2010 Mar; 175(1-3):688-94. PubMed ID: 19959290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.