These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19369145)

  • 1. Analysis of the mechanism of action of deep brain stimulation using the concepts of dither injection and the equivalent nonlinearity.
    de Paor AM; Lowery MM
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2717-20. PubMed ID: 19369145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking brain dynamics, neural mechanisms, and deep brain stimulation in Parkinson's disease: an integrated perspective.
    Modolo J; Beuter A
    Med Eng Phys; 2009 Jul; 31(6):615-23. PubMed ID: 19243986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model.
    Feng XJ; Greenwald B; Rabitz H; Shea-Brown E; Kosut R
    J Neural Eng; 2007 Jun; 4(2):L14-21. PubMed ID: 17409470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL; Mei LZ; Arle JE
    Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights offered by a computational model of deep brain stimulation.
    Modolo J; Mosekilde E; Beuter A
    J Physiol Paris; 2007; 101(1-3):56-63. PubMed ID: 18042354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed-loop control of deep brain stimulation: a simulation study.
    Santaniello S; Fiengo G; Glielmo L; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):15-24. PubMed ID: 20889437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency subthalamic oscillations increase after deep brain stimulation in Parkinson's disease.
    Priori A; Ardolino G; Marceglia S; Mrakic-Sposta S; Locatelli M; Tamma F; Rossi L; Foffani G
    Brain Res Bull; 2006 Dec; 71(1-3):149-54. PubMed ID: 17113940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 300-Hz subthalamic oscillations in Parkinson's disease.
    Foffani G; Priori A; Egidi M; Rampini P; Tamma F; Caputo E; Moxon KA; Cerutti S; Barbieri S
    Brain; 2003 Oct; 126(Pt 10):2153-63. PubMed ID: 12937087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.
    Chang JY; Shi LH; Luo F; Zhang WM; Woodward DJ
    Neurosci Biobehav Rev; 2008; 32(3):352-66. PubMed ID: 18035416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease.
    Beuter A; Modolo J
    Chaos; 2009 Jun; 19(2):026114. PubMed ID: 19566274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of deep brain stimulation and medication on bradykinesia and muscle activation in Parkinson's disease.
    Vaillancourt DE; Prodoehl J; Verhagen Metman L; Bakay RA; Corcos DM
    Brain; 2004 Mar; 127(Pt 3):491-504. PubMed ID: 14662520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.
    Agarwal R; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1539-42. PubMed ID: 21096376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal ganglia oscillations and pathophysiology of movement disorders.
    Rivlin-Etzion M; Marmor O; Heimer G; Raz A; Nini A; Bergman H
    Curr Opin Neurobiol; 2006 Dec; 16(6):629-37. PubMed ID: 17084615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson's disease.
    Foffani G; Ardolino G; Egidi M; Caputo E; Bossi B; Priori A
    Brain Res Bull; 2006 Mar; 69(2):123-30. PubMed ID: 16533660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of describing function analysis to a model of deep brain stimulation.
    Davidson CM; de Paor AM; Lowery MM
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):957-65. PubMed ID: 24557697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling parkinsonian circuitry and the DBS electrode. I. Biophysical background and software.
    Arle JE; Mei LZ; Shils JL
    Stereotact Funct Neurosurg; 2008; 86(1):1-15. PubMed ID: 17881884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials.
    Foffani G; Bianchi AM; Priori A; Baselli G
    J Neural Eng; 2004 Sep; 1(3):165-73. PubMed ID: 15876636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorders.
    Marceglia S; Rossi L; Foffani G; Bianchi A; Cerutti S; Priori A
    Expert Rev Med Devices; 2007 Sep; 4(5):605-14. PubMed ID: 17850195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-Loop Control of Tremor-Predominant Parkinsonian State Based on Parameter Estimation.
    Liu C; Wang J; Deng B; Wei X; Yu H; Li H; Fietkiewicz C; Loparo KA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1109-1121. PubMed ID: 26955042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.