These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 19369195)
1. Large-scale proteomics analysis of the human kinome. Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195 [TBL] [Abstract][Full Text] [Related]
2. Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry. Wissing J; Jänsch L; Nimtz M; Dieterich G; Hornberger R; Kéri G; Wehland J; Daub H Mol Cell Proteomics; 2007 Mar; 6(3):537-47. PubMed ID: 17192257 [TBL] [Abstract][Full Text] [Related]
3. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Wissing J; Godl K; Brehmer D; Blencke S; Weber M; Habenberger P; Stein-Gerlach M; Missio A; Cotten M; Müller S; Daub H Mol Cell Proteomics; 2004 Dec; 3(12):1181-93. PubMed ID: 15475568 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling. Zhang L; Holmes IP; Hochgräfe F; Walker SR; Ali NA; Humphrey ES; Wu J; de Silva M; Kersten WJ; Connor T; Falk H; Allan L; Street IP; Bentley JD; Pilling PA; Monahan BJ; Peat TS; Daly RJ J Proteome Res; 2013 Jul; 12(7):3104-16. PubMed ID: 23692254 [TBL] [Abstract][Full Text] [Related]
5. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Verkhivker GM Proteins; 2007 Mar; 66(4):912-29. PubMed ID: 17173284 [TBL] [Abstract][Full Text] [Related]
6. Quantitative phosphokinome analysis of the Met pathway activated by the invasin internalin B from Listeria monocytogenes. Reinl T; Nimtz M; Hundertmark C; Johl T; Kéri G; Wehland J; Daub H; Jänsch L Mol Cell Proteomics; 2009 Dec; 8(12):2778-95. PubMed ID: 19640851 [TBL] [Abstract][Full Text] [Related]
7. Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. Schweppe DK; Rigas JR; Gerber SA J Proteomics; 2013 Oct; 91():286-96. PubMed ID: 23911959 [TBL] [Abstract][Full Text] [Related]
8. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157 [TBL] [Abstract][Full Text] [Related]
9. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Xiao Y; Guo L; Wang Y Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089 [TBL] [Abstract][Full Text] [Related]
10. Quantitative proteomics of kinase inhibitor targets and mechanisms. Daub H ACS Chem Biol; 2015 Jan; 10(1):201-12. PubMed ID: 25474541 [TBL] [Abstract][Full Text] [Related]
11. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques. Sugiyama N; Ishihama Y J Pharm Biomed Anal; 2016 Oct; 130():264-272. PubMed ID: 27301379 [TBL] [Abstract][Full Text] [Related]
12. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Nett IR; Martin DM; Miranda-Saavedra D; Lamont D; Barber JD; Mehlert A; Ferguson MA Mol Cell Proteomics; 2009 Jul; 8(7):1527-38. PubMed ID: 19346560 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of kinase-selective inhibitors by chemical proteomics. Daub H Biochim Biophys Acta; 2005 Dec; 1754(1-2):183-90. PubMed ID: 16198161 [TBL] [Abstract][Full Text] [Related]
14. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103 [TBL] [Abstract][Full Text] [Related]
15. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Nguyen V; Cao L; Lin JT; Hung N; Ritz A; Yu K; Jianu R; Ulin SP; Raphael BJ; Laidlaw DH; Brossay L; Salomon AR Mol Cell Proteomics; 2009 Nov; 8(11):2418-31. PubMed ID: 19605366 [TBL] [Abstract][Full Text] [Related]
16. Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment. Guo L; Xiao Y; Wang Y Anal Chem; 2014 Nov; 86(21):10700-7. PubMed ID: 25301106 [TBL] [Abstract][Full Text] [Related]
17. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419 [TBL] [Abstract][Full Text] [Related]
18. Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics. Guo L; Xiao Y; Fan M; Li JJ; Wang Y J Proteome Res; 2015 Jan; 14(1):193-201. PubMed ID: 25341124 [TBL] [Abstract][Full Text] [Related]
19. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation. Borisova ME; Wagner SA; Beli P Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122 [TBL] [Abstract][Full Text] [Related]
20. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry. Olsson N; James P; Borrebaeck CA; Wingren C Mol Cell Proteomics; 2012 Aug; 11(8):342-54. PubMed ID: 22543061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]