BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19369246)

  • 1. Age-related decline in rod phototransduction sensitivity in rhesus monkeys fed an n-3 fatty acid-deficient diet.
    Jeffrey BG; Neuringer M
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4360-7. PubMed ID: 19369246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-3 fatty acid deficiency alters recovery of the rod photoresponse in rhesus monkeys.
    Jeffrey BG; Mitchell DC; Gibson RA; Neuringer M
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2806-14. PubMed ID: 12147619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual acuity and retinal function in infant monkeys fed long-chain PUFA.
    Jeffrey BG; Mitchell DC; Hibbeln JR; Gibson RA; Chedester AL; Salem N
    Lipids; 2002 Sep; 37(9):839-48. PubMed ID: 12458618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the cone ERG in infants.
    Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3458-62. PubMed ID: 16123452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-year placebo-controlled trial of docosahexaenoic acid in X-linked retinitis pigmentosa (DHAX trial): a randomized clinical trial.
    Hoffman DR; Hughbanks-Wheaton DK; Pearson NS; Fish GE; Spencer R; Takacs A; Klein M; Locke KG; Birch DG
    JAMA Ophthalmol; 2014 Jul; 132(7):866-73. PubMed ID: 24805262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cone electroretinogram in retinopathy of prematurity.
    Fulton AB; Hansen RM; Moskowitz A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):814-9. PubMed ID: 18235032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG.
    Cameron MA; Lucas RJ
    Mol Vis; 2009 Oct; 15():2209-16. PubMed ID: 19898639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.
    Jamison JA; Bush RA; Lei B; Sieving PA
    Vis Neurosci; 2001; 18(3):445-55. PubMed ID: 11497421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age.
    Cideciyan AV; Jacobson SG
    Vision Res; 1996 Aug; 36(16):2609-21. PubMed ID: 8917821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of the rod photoresponse in infants.
    Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):764-8. PubMed ID: 15671311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can prenatal N-3 fatty acid deficiency be completely reversed after birth? Effects on retinal and brain biochemistry and visual function in rhesus monkeys.
    Anderson GJ; Neuringer M; Lin DS; Connor WE
    Pediatr Res; 2005 Nov; 58(5):865-72. PubMed ID: 16257925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina.
    Weisinger HS; Vingrys AJ; Bui BV; Sinclair AJ
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):327-38. PubMed ID: 9950590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram.
    Friedburg C; Allen CP; Mason PJ; Lamb TD
    J Physiol; 2004 May; 556(Pt 3):819-34. PubMed ID: 14990682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoresponses of human rods in vivo derived from paired-flash electroretinograms.
    Pepperberg DR; Birch DG; Hood DC
    Vis Neurosci; 1997; 14(1):73-82. PubMed ID: 9057270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor.
    Ikemoto A; Ohishi M; Sato Y; Hata N; Misawa Y; Fujii Y; Okuyama H
    J Lipid Res; 2001 Oct; 42(10):1655-63. PubMed ID: 11590222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT; Darrow RM; Jiang YL; Blanks JC
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional manipulation of primate retinas. IV. Effects of n--3 fatty acids, lutein, and zeaxanthin on S-cones and rods in the foveal region.
    Leung IY; Sandstrom MM; Zucker CL; Neuringer M; Max Snodderly D
    Exp Eye Res; 2005 Nov; 81(5):513-29. PubMed ID: 15916761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol consumption alters electroretinograms and depletes neural tissues of docosahexaenoic acid in rhesus monkeys: nutritional consequences of a low n-3 fatty acid diet.
    Pawlosky RJ; Bacher J; Salem N
    Alcohol Clin Exp Res; 2001 Dec; 25(12):1758-65. PubMed ID: 11781509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.