BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19369256)

  • 1. Structural and biophysical characterization of BoxC from Burkholderia xenovorans LB400: a novel ring-cleaving enzyme in the crotonase superfamily.
    Bains J; Leon R; Boulanger MJ
    J Biol Chem; 2009 Jun; 284(24):16377-16385. PubMed ID: 19369256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC(C)) from Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 May; 64(Pt 5):422-4. PubMed ID: 18453716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway.
    Bains J; Boulanger MJ
    J Mol Biol; 2007 Nov; 373(4):965-77. PubMed ID: 17884091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member.
    Li HJ; Li X; Liu N; Zhang H; Truglio JJ; Mishra S; Kisker C; Garcia-Diaz M; Tonge PJ
    Biochemistry; 2011 Nov; 50(44):9532-44. PubMed ID: 21830810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New reactions in the crotonase superfamily: structure of methylmalonyl CoA decarboxylase from Escherichia coli.
    Benning MM; Haller T; Gerlt JA; Holden HM
    Biochemistry; 2000 Apr; 39(16):4630-9. PubMed ID: 10769118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme.
    Gescher J; Eisenreich W; Wörth J; Bacher A; Fuchs G
    Mol Microbiol; 2005 Jun; 56(6):1586-600. PubMed ID: 15916608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400.
    Bains J; Leon R; Temke KG; Boulanger MJ
    Protein Sci; 2011 Jun; 20(6):1048-59. PubMed ID: 21495107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum.
    Kim EJ; Kim YJ; Kim KJ
    Biochem Biophys Res Commun; 2014 Aug; 451(3):431-5. PubMed ID: 25110148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Δ³,Δ²-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10.
    Onwukwe GU; Kursula P; Koski MK; Schmitz W; Wierenga RK
    FEBS J; 2015 Feb; 282(4):746-68. PubMed ID: 25515061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isomerase and hydratase reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from structures of complexes with 3S-hydroxy-acyl-CoA.
    Kasaragod P; Schmitz W; Hiltunen JK; Wierenga RK
    FEBS J; 2013 Jul; 280(13):3160-75. PubMed ID: 23351063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and sequence comparisons of bacterial enoyl-CoA isomerase and enoyl-CoA hydratase.
    Hwang J; Jeong CS; Lee CW; Shin SC; Kim HW; Lee SG; Youn UJ; Lee CS; Oh TJ; Kim HJ; Park H; Park HH; Lee JH
    J Microbiol; 2020 Jul; 58(7):606-613. PubMed ID: 32323197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of function in the crotonase superfamily: the stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase.
    Eberhard ED; Gerlt JA
    J Am Chem Soc; 2004 Jun; 126(23):7188-9. PubMed ID: 15186151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis.
    Hisano T; Tsuge T; Fukui T; Iwata T; Miki K; Doi Y
    J Biol Chem; 2003 Jan; 278(1):617-24. PubMed ID: 12409309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of the crotonase superfamily: Diverse assembly and diverse function.
    Dalwani S; Wierenga RK
    Curr Opin Struct Biol; 2023 Oct; 82():102671. PubMed ID: 37542911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic studies on carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily catalyzing the first step in carbapenem biosynthesis.
    Sleeman MC; Sorensen JL; Batchelar ET; McDonough MA; Schofield CJ
    J Biol Chem; 2005 Oct; 280(41):34956-65. PubMed ID: 16096274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent function in the crotonase superfamily: an anhydride intermediate in the reaction catalyzed by 3-hydroxyisobutyryl-CoA hydrolase.
    Wong BJ; Gerlt JA
    J Am Chem Soc; 2003 Oct; 125(40):12076-7. PubMed ID: 14518977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain.
    Bains J; Kaufman L; Farnell B; Boulanger MJ
    J Mol Biol; 2011 Mar; 406(5):649-58. PubMed ID: 21237173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 2-A crystal structure of 6-oxo camphor hydrolase. New structural diversity in the crotonase superfamily.
    Whittingham JL; Turkenburg JP; Verma CS; Walsh MA; Grogan G
    J Biol Chem; 2003 Jan; 278(3):1744-50. PubMed ID: 12421807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of phenylacetic acid degradation protein PaaG from Thermus thermophilus HB8.
    Kichise T; Hisano T; Takeda K; Miki K
    Proteins; 2009 Sep; 76(4):779-86. PubMed ID: 19452559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.