These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1936945)

  • 1. Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress.
    Meikle AJ; Chudek JA; Reed RH; Gadd GM
    FEMS Microbiol Lett; 1991 Aug; 66(2):163-7. PubMed ID: 1936945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media.
    Bellinger Y; Larher F
    Can J Microbiol; 1988 May; 34(5):605-12. PubMed ID: 3061619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of arabitol from glycerol: strain screening and study of factors affecting production yield.
    Koganti S; Kuo TM; Kurtzman CP; Smith N; Ju LK
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):257-67. PubMed ID: 21127857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts.
    Fonseca C; Neves AR; Antunes AM; Noronha JP; Hahn-Hägerdal B; Santos H; Spencer-Martins I
    Appl Environ Microbiol; 2008 Mar; 74(6):1845-55. PubMed ID: 18245253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans.
    Sánchez-Fresneda R; Guirao-Abad JP; Argüelles A; González-Párraga P; Valentín E; Argüelles JC
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1334-9. PubMed ID: 23261427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of acyclic polyols and trehalose as related to growth form and carbohydrate source in the dimorphic fungi Mucor rouxii and Candida albicans.
    Pfyffer GE; Rast DM
    Mycopathologia; 1989 Jan; 105(1):25-33. PubMed ID: 2500596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The metabolism of trehalose and intracellular glycerol in Candida krusei responding to high osmosis].
    Zhang Y; Liang M; Liu DH
    Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):332-5. PubMed ID: 11517613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina.
    Nesci A; Etcheverry M; Magan N
    J Appl Microbiol; 2004; 96(5):965-72. PubMed ID: 15078512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyol pools in Aspergillus niger.
    Witteveen CF; Visser J
    FEMS Microbiol Lett; 1995 Dec; 134(1):57-62. PubMed ID: 8593956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic significance of glycerol accumulation in exponentially growing yeasts.
    Reed RH; Chudek JA; Foster R; Gadd GM
    Appl Environ Microbiol; 1987 Sep; 53(9):2119-23. PubMed ID: 3314706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of arabitol by yeasts: current status and future prospects.
    Kordowska-Wiater M
    J Appl Microbiol; 2015 Aug; 119(2):303-14. PubMed ID: 25809659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation and release of osmolytes by yeasts during hypo-osmotic stress.
    Kayingo G; Kilian SG; Prior BA
    Arch Microbiol; 2001 Dec; 177(1):29-35. PubMed ID: 11797041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans.
    Kayingo G; Wong B
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2987-2999. PubMed ID: 16151209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii.
    Yagi T
    Microbios; 1992; 70(283):93-102. PubMed ID: 1501597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake.
    Abadias M; Teixidó N; Usall J; Viñas I; Magan N
    J Appl Microbiol; 2000 Dec; 89(6):1009-17. PubMed ID: 11123474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of new polyol/H+ symporters in Debaryomyces hansenii.
    Pereira I; Madeira A; Prista C; Loureiro-Dias MC; Leandro MJ
    PLoS One; 2014; 9(2):e88180. PubMed ID: 24505419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osmotic stress tolerance of basidiomycetous yeasts.
    Tekolo OM; McKenzie J; Botha A; Prior BA
    FEMS Yeast Res; 2010 Jun; 10(4):482-91. PubMed ID: 20214685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of the Zygosaccharomyces rouxii Fps1p homologue.
    Tang XM; Kayingo G; Prior BA
    Yeast; 2005 May; 22(7):571-81. PubMed ID: 15942934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13C NMR studies of carbon metabolism in the hyphal fungus Aspergillus nidulans.
    Dijkema C; Kester HC; Visser J
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):14-8. PubMed ID: 3881752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress.
    González-Hernández JC; Jiménez-Estrada M; Peña A
    Extremophiles; 2005 Feb; 9(1):7-16. PubMed ID: 15338455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.