These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19369504)

  • 1. Exciting times in the tadpole spinal cord.
    Parker D
    J Physiol; 2009 Apr; 587(Pt 8):1635. PubMed ID: 19369504
    [No Abstract]   [Full Text] [Related]  

  • 2. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 3. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B; Morin D; Viala D
    Eur J Neurosci; 2001 Nov; 14(10):1727-38. PubMed ID: 11860467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles.
    Wolf E; Soffe SR; Roberts A
    J Comput Neurosci; 2009 Oct; 27(2):291-308. PubMed ID: 19288183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vitro neonatal rat spinal cord preparation: a new insight into mammalian locomotor mechanisms.
    Clarac F; Pearlstein E; Pflieger JF; Vinay L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 May; 190(5):343-57. PubMed ID: 14872261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossed reciprocal inhibition evoked by electrical stimulation of the lamprey spinal cord.
    Fagerstedt P; Zelenin PV; Deliagina TG; Orlovsky GN; Grillner S
    Exp Brain Res; 2000 Sep; 134(2):147-54. PubMed ID: 11037281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrograde labeling of migrating spinal motoneurons in bullfrog larvae.
    Farel PB; Bemelmans SE
    Neurosci Lett; 1980 Jun; 18(2):133-6. PubMed ID: 6189018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus time-locked responses of motoneurons during forelimb fictive locomotion evoked by repetitive stimulation of the lateral funiculus.
    Kinoshita M; Yamaguchi T
    Brain Res; 2001 Jun; 904(1):31-42. PubMed ID: 11516409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ascending spinal pathway transmitting a central rhythmic pattern to the magnocellular red nucleus in the cat.
    Vinay L; Padel Y; Bourbonnais D; Steffens H
    Exp Brain Res; 1993; 97(1):61-70. PubMed ID: 8131832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Locomotor control by the brainstem and spinal cord].
    Takakusaki K; Matsuyama K
    Brain Nerve; 2010 Nov; 62(11):1117-28. PubMed ID: 21068448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits.
    Kimura Y; Okamura Y; Higashijima S
    J Neurosci; 2006 May; 26(21):5684-97. PubMed ID: 16723525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal correlations in stochastic models of double bursting during simulated locomotion.
    Boothe DL; Cohen AH; Troyer TW
    J Neurophysiol; 2006 Mar; 95(3):1556-70. PubMed ID: 16354728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory and descending motor circuitry during development and injury.
    Plant GW; Weinrich JA; Kaltschmidt JA
    Curr Opin Neurobiol; 2018 Dec; 53():156-161. PubMed ID: 30205323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural system for boosting locomotion.
    Tresch MC
    Nat Neurosci; 2010 Jun; 13(6):659-60. PubMed ID: 20498686
    [No Abstract]   [Full Text] [Related]  

  • 19. A commanding control of behavior.
    Thirumalai V; Cline HT
    Nat Neurosci; 2008 Mar; 11(3):246-8. PubMed ID: 18301430
    [No Abstract]   [Full Text] [Related]  

  • 20. Peripheral control of the spinal pattern generators for locomotion in cat.
    Andersson O; Grillner S; Lindquist M; Zomlefer M
    Brain Res; 1978 Jul; 150(3):625-30. PubMed ID: 678995
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.