These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19369741)

  • 1. Real-time T-p knot algorithm for baseline wander noise removal from the electrocardiogram - biomed 2009.
    Brown LF; Arunachalam SP
    Biomed Sci Instrum; 2009; 45():65-70. PubMed ID: 19369741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time estimation of the ecg-derived respiration (edr) signal - biomed 2009.
    Brown LF; Arunachalam SP
    Biomed Sci Instrum; 2009; 45():59-64. PubMed ID: 19369740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for baseline wander noise removal.
    Arunachalam SP; Brown LF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5681-4. PubMed ID: 19964140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.
    Bahaz M; Benzid R
    Australas Phys Eng Sci Med; 2018 Mar; 41(1):143-160. PubMed ID: 29404852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic templates.
    Karimipour A; Homaeinezhad MR
    Comput Biol Med; 2014 Sep; 52():153-65. PubMed ID: 25063881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition.
    Gupta P; Sharma KK; Joshi SD
    Healthc Technol Lett; 2015 Dec; 2(6):164-6. PubMed ID: 26713161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Correction of electrocardiogram signal baseline wander based on statistically weighted moving average filter].
    Hu X; Xiao Z; Zhang N; Han X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):51-4. PubMed ID: 22404006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Problems and limitations of ECG baseline estimation and removal using a cubic spline technique during exercise ECG testing: recommendations for proper implementation.
    Froning JN; Olson MD; Froelicher VF
    J Electrocardiol; 1988; 21 Suppl():S149-57. PubMed ID: 3216170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and classification of ECG noises using decomposition on mixed codebook for quality analysis.
    Kumar P; Sharma VK
    Healthc Technol Lett; 2020 Feb; 7(1):18-24. PubMed ID: 32190336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography.
    Niederhauser T; Wyss-Balmer T; Haeberlin A; Marisa T; Wildhaber RA; Goette J; Jacomet M; Vogel R
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1576-84. PubMed ID: 25675449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian-optimized spline representation of the electrocardiogram.
    Guilak FG; McNames J
    Physiol Meas; 2013 Nov; 34(11):1467-82. PubMed ID: 24149574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECG signal denoising and baseline wander correction based on the empirical mode decomposition.
    Blanco-Velasco M; Weng B; Barner KE
    Comput Biol Med; 2008 Jan; 38(1):1-13. PubMed ID: 17669389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of detected multi-channel maternal electrocardiogram (ECG) R-wave peak locations.
    Yu Q; Guan Q; Li P; Liu TB; Huang XL; Zhao Y; Liu HX; Wang YQ
    Biomed Eng Online; 2016 Jan; 15(1):4. PubMed ID: 26758885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECG signal enhancement using S-Transform.
    Ari S; Das MK; Chacko A
    Comput Biol Med; 2013 Jul; 43(6):649-60. PubMed ID: 23668340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing different wavelet transforms on removing electrocardiogram baseline wanders and special trends.
    Chen CC; Tsui FR
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):343. PubMed ID: 33380333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings.
    Mateo J; Rieta JJ
    J Med Eng Technol; 2012 Feb; 36(2):90-101. PubMed ID: 22268996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance.
    Apandi ZFM; Ikeura R; Hayakawa S; Tsutsumi S
    Bioengineering (Basel); 2020 Jun; 7(2):. PubMed ID: 32517214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An Improved Cubic Spline Interpolation Method for Removing Electrocardiogram Baseline Drift].
    Wan X; Tang W; Zhang L; Wu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):227-231. PubMed ID: 29708320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal and EMD based removal of baseline wander and powerline interference from ECG signals.
    Agrawal S; Gupta A
    Comput Biol Med; 2013 Nov; 43(11):1889-99. PubMed ID: 24209934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals.
    Guven O; Eftekhar A; Kindt W; Constandinou TG
    Healthc Technol Lett; 2016 Jun; 3(2):105-10. PubMed ID: 27382478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.