These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1936987)

  • 1. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription.
    McStay B; Frazier MW; Reeder RH
    Genes Dev; 1991 Nov; 5(11):1957-68. PubMed ID: 1936987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis.
    McStay B; Hu CH; Pikaard CS; Reeder RH
    EMBO J; 1991 Aug; 10(8):2297-303. PubMed ID: 2065665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
    Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T
    Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription.
    Jantzen HM; Chow AM; King DS; Tjian R
    Genes Dev; 1992 Oct; 6(10):1950-63. PubMed ID: 1398072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction.
    Leblanc B; Read C; Moss T
    EMBO J; 1993 Feb; 12(2):513-25. PubMed ID: 8440241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals.
    Bachvarov D; Normandeau M; Moss T
    FEBS Lett; 1991 Aug; 288(1-2):55-9. PubMed ID: 1879565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach.
    Dimitrov SI; Bachvarov D; Moss T
    DNA Cell Biol; 1993 Apr; 12(3):275-81. PubMed ID: 8466650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes.
    Bachvarov D; Moss T
    Nucleic Acids Res; 1991 May; 19(9):2331-5. PubMed ID: 2041774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism.
    Maeda Y; Hisatake K; Kondo T; Hanada K; Song CZ; Nishimura T; Muramatsu M
    EMBO J; 1992 Oct; 11(10):3695-704. PubMed ID: 1396565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
    Cairns C; McStay B
    Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity.
    Hu CH; McStay B; Jeong SW; Reeder RH
    Mol Cell Biol; 1994 May; 14(5):2871-82. PubMed ID: 8164649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2.
    O'Mahony DJ; Smith SD; Xie W; Rothblum LI
    Nucleic Acids Res; 1992 Mar; 20(6):1301-8. PubMed ID: 1561086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimerization and HMG box domains 1-3 present in Xenopus UBF are sufficient for its role in transcriptional enhancement.
    Sullivan GJ; McStay B
    Nucleic Acids Res; 1998 Aug; 26(15):3555-61. PubMed ID: 9671818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro.
    Read C; Larose AM; Leblanc B; Bannister AJ; Firek S; Smith DR; Moss T
    J Biol Chem; 1992 Jun; 267(16):10961-7. PubMed ID: 1597438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF.
    Stefanovsky VY; Langlois F; Bazett-Jones D; Pelletier G; Moss T
    Biochemistry; 2006 Mar; 45(11):3626-34. PubMed ID: 16533045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins.
    Jantzen HM; Admon A; Bell SP; Tjian R
    Nature; 1990 Apr; 344(6269):830-6. PubMed ID: 2330041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF.
    Bazett-Jones DP; Leblanc B; Herfort M; Moss T
    Science; 1994 May; 264(5162):1134-7. PubMed ID: 8178172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.
    Guimond A; Moss T
    Nucleic Acids Res; 1992 Jul; 20(13):3361-6. PubMed ID: 1630907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA.
    Putnam CD; Copenhaver GP; Denton ML; Pikaard CS
    Mol Cell Biol; 1994 Oct; 14(10):6476-88. PubMed ID: 7935371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids.
    Copenhaver GP; Putnam CD; Denton ML; Pikaard CS
    Nucleic Acids Res; 1994 Jul; 22(13):2651-7. PubMed ID: 8041627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.