These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1937000)

  • 61. Identification of a transcriptional regulatory region of the rat pancreatitis-associated protein I (PAP I) gene that confers tissue specificity.
    Dusetti NJ; Ortiz EM; Dagorn JC; Iovanna JL
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):643-7. PubMed ID: 7487908
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD.
    Hue KK; Bechhofer DH
    J Bacteriol; 1992 Sep; 174(18):5860-8. PubMed ID: 1522064
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system.
    Crutz AM; Steinmetz M
    J Bacteriol; 1992 Oct; 174(19):6087-95. PubMed ID: 1400159
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase.
    Stoss O; Mogk A; Schumann W
    FEMS Microbiol Lett; 1997 May; 150(1):49-54. PubMed ID: 9163905
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An initiation signal in the 5' untranslated leader sequence of encephalomyocarditis virus RNA.
    Oudshoorn P; Thomas A; Scheper G; Voorma HO
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):124-8. PubMed ID: 2169887
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.
    Lin M; Dan H; Li Y
    Curr Microbiol; 2004 Feb; 48(2):145-52. PubMed ID: 15057484
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.
    Wray LV; Ferson AE; Fisher SH
    J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bacillus subtilis tetA(L) gene expression: evidence for regulation by translational reinitiation.
    Stasinopoulos SJ; Farr GA; Bechhofer DH
    Mol Microbiol; 1998 Dec; 30(5):923-32. PubMed ID: 9988470
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader.
    Fütterer J; Gordon K; Pfeiffer P; Sanfaçon H; Pisan B; Bonneville JM; Hohn T
    Virus Genes; 1989 Sep; 3(1):45-55. PubMed ID: 2815595
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose.
    Gärtner D; Geissendörfer M; Hillen W
    J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Repression of IS200 transposase synthesis by RNA secondary structures.
    Beuzón CR; Marqués S; Casadesús J
    Nucleic Acids Res; 1999 Sep; 27(18):3690-5. PubMed ID: 10471738
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expression of chloramphenicol acetyltransferase in Bacillus subtilis under the control of a phytoplasma promoter.
    Palmano S; Kirkpatrick BC; Firrao G
    FEMS Microbiol Lett; 2001 May; 199(2):177-9. PubMed ID: 11377863
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance.
    Gryczan TJ; Grandi G; Hahn J; Grandi R; Dubnau D
    Nucleic Acids Res; 1980 Dec; 8(24):6081-97. PubMed ID: 6162157
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance.
    Horinouchi S; Weisblum B
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7079-83. PubMed ID: 6938954
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine.
    Grandoni JA; Fulmer SB; Brizzio V; Zahler SA; Calvo JM
    J Bacteriol; 1993 Dec; 175(23):7581-93. PubMed ID: 8244927
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Leader peptides of inducible chloramphenicol resistance genes from gram-positive and gram-negative bacteria bind to yeast and Archaea large subunit rRNA.
    Harrod R; Lovett PS
    Nucleic Acids Res; 1997 May; 25(9):1720-6. PubMed ID: 9108153
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria.
    Provvedi R; Maggi T; Oggioni MR; Manganelli R; Pozzi G
    BMC Biotechnol; 2005 Jan; 5():3. PubMed ID: 15651989
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of the inducible chloramphenicol acetyltransferase gene of the Staphylococcus aureus plasmid pUB112.
    Brückner R; Matzura H
    EMBO J; 1985 Sep; 4(9):2295-300. PubMed ID: 3865770
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction.
    Wang Y; Taylor DE
    Gene; 1990 Sep; 94(1):23-8. PubMed ID: 2227449
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis regulates translation initiation of ycbK, a gene encoding a putative efflux protein, by blocking ribosome binding.
    Yakhnin H; Yakhnin AV; Babitzke P
    Mol Microbiol; 2006 Sep; 61(5):1252-66. PubMed ID: 16879415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.