These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19370129)

  • 1. Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device.
    R R; Butt H; Wilkinson TD
    Opt Lett; 2009 Apr; 34(8):1237-9. PubMed ID: 19370129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals.
    Rajasekharan R; Dai Q; Wilkinson TD
    Appl Opt; 2010 Apr; 49(11):2099-104. PubMed ID: 20390012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of nanotube electrode geometry in a liquid crystal media from wavefront aberrations.
    Rajasekharan R; Dai Q; Butt H; Won K; Wilkinson TD; Amaratunga GA
    Appl Opt; 2012 Feb; 51(4):422-8. PubMed ID: 22307111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes.
    Wang X; Wilkinson TD; Mann M; Teo KB; Milne WI
    Appl Opt; 2010 Jun; 49(17):3311-5. PubMed ID: 20539349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homeotropic liquid crystal device employing vertically aligned carbon nanotube arrays as the alignment agent.
    Basu R; Atwood LJ
    Phys Rev E; 2020 Aug; 102(2-1):022701. PubMed ID: 32942416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical absorptance measurement of an individual multiwall carbon nanotube using a T type thermal probe method.
    Li QY; Liu JH; Wang HD; Zhang X; Takahashi K
    Rev Sci Instrum; 2013 Oct; 84(10):104905. PubMed ID: 24182149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.
    Pumera M; Merkoçi A; Alegret S
    Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent liquid-crystal-based microlens array using vertically aligned carbon nanofiber electrodes on quartz substrates.
    Dai Q; Rajasekharan R; Butt H; Won K; Wang X; Wilkinson TD; Amaragtunga G
    Nanotechnology; 2011 Mar; 22(11):115201. PubMed ID: 21297239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal.
    Basu R; Iannacchione GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051705. PubMed ID: 20866245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ommatidia structure based on double layers of liquid crystal microlens array.
    Kang S; Qing T; Sang H; Zhang X; Xie C
    Appl Opt; 2013 Nov; 52(33):7912-8. PubMed ID: 24513741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal.
    Jeong SJ; Sureshkumar P; Jeong KU; Srivastava AK; Lee SH; Jeong SH; Lee YH; Lu R; Wu ST
    Opt Express; 2007 Sep; 15(18):11698-705. PubMed ID: 19547530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis.
    Terse-Thakoor T; Komori K; Ramnani P; Lee I; Mulchandani A
    Langmuir; 2015 Dec; 31(47):13054-61. PubMed ID: 26551320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time.
    Ren H; Xu S; Wu ST
    Opt Lett; 2013 Aug; 38(16):3144-7. PubMed ID: 24104671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube based separation columns for high electrical field strengths in microchip electrochromatography.
    Mogensen KB; Chen M; Molhave K; Boggild P; Kutter JP
    Lab Chip; 2011 Jun; 11(12):2116-8. PubMed ID: 21547314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Electrically and Thermally Erasable Liquid Crystal Film Containing NIR Absorbent Carbon Nanotube.
    Miao Z; Wang D
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous electrokinetic dispersion of carbon nanotube clusters in liquid crystal under electric field.
    Sureshkumar P; Srivastava AK; Jeong SJ; Kim M; Jo EM; Lee SH; Lee YH
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4741-6. PubMed ID: 19928143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.
    Tie W; Bhattacharyya SS; Park HR; Lee JH; Lee SW; Lee TH; Lee YH; Lee SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012508. PubMed ID: 25122325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light harvesting with multiwall carbon nanotube/silicon heterojunctions.
    Castrucci P; Scilletta C; Del Gobbo S; Scarselli M; Camilli L; Simeoni M; Delley B; Continenza A; De Crescenzi M
    Nanotechnology; 2011 Mar; 22(11):115701. PubMed ID: 21297234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.