BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 19370228)

  • 1. Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features.
    de Araujo CC; Kreuer KD; Schuster M; Portale G; Mendil-Jakani H; Gebel G; Maier J
    Phys Chem Chem Phys; 2009 May; 11(17):3305-12. PubMed ID: 19370228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications.
    Bae B; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1279-86. PubMed ID: 20355924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfonated poly(arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Fuel cell performance.
    Bae B; Yoda T; Miyatake K; Uchida M; Uchida H; Watanabe M
    J Phys Chem B; 2010 Aug; 114(32):10481-7. PubMed ID: 20701380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships of Acid and water content to proton transport in statistically sulfonated proton exchange membranes: variation of water content via control of relative humidity.
    Peckham TJ; Schmeisser J; Holdcroft S
    J Phys Chem B; 2008 Mar; 112(10):2848-58. PubMed ID: 18288828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(arylene ether)s containing superacid groups as proton exchange membranes.
    Mikami T; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1714-21. PubMed ID: 20491452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells.
    Barique MA; Wu L; Takimoto N; Kidena K; Ohira A
    J Phys Chem B; 2009 Dec; 113(49):15921-7. PubMed ID: 19908869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.
    Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered structures in proton conducting membranes from supramolecular liquid crystal polymers.
    Every HA; Mendes E; Picken SJ
    J Phys Chem B; 2006 Nov; 110(47):23729-35. PubMed ID: 17125333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.
    Varcoe JR
    Phys Chem Chem Phys; 2007 Mar; 9(12):1479-86. PubMed ID: 17356755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel highly proton conductive sulfonated poly(p-phenylene) from 2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cell applications.
    Seesukphronrarak S; Ohira A
    Chem Commun (Camb); 2009 Aug; (31):4744-6. PubMed ID: 19641829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison between highly crystalline and low crystalline poly(phenylene sulfide) as polymer electrolyte membranes for fuel cells.
    Barique MA; Seesukphronrarak S; Wu L; Ohira A
    J Phys Chem B; 2011 Jan; 115(1):27-33. PubMed ID: 21158407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.
    Subianto S; Mistry MK; Choudhury NR; Dutta NK; Knott R
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1173-82. PubMed ID: 20355910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.
    Hara N; Ohashi H; Ito T; Yamaguchi T
    J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfonated poly(arylene ether sulfone)s with phosphine oxide moieties: a promising material for proton exchange membranes.
    Fu L; Xiao G; Yan D
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1601-7. PubMed ID: 20507071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes.
    Sambandam S; Ramani V
    Phys Chem Chem Phys; 2010 Jun; 12(23):6140-9. PubMed ID: 20383348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscale modeling of hydrated morphologies of sulfonated polysulfone ionomers.
    Wang C; Paddison SJ
    Soft Matter; 2014 Feb; 10(6):819-30. PubMed ID: 24651930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.
    Luo X; Holdcroft S; Mani A; Zhang Y; Shi Z
    Phys Chem Chem Phys; 2011 Oct; 13(40):18055-62. PubMed ID: 21915410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.