These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19370249)

  • 1. Biomolecular motor-driven molecular sorter.
    Kim T; Cheng LJ; Kao MT; Hasselbrink EF; Guo L; Meyhöfer E
    Lab Chip; 2009 May; 9(9):1282-5. PubMed ID: 19370249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule transport, concentration and alignment in enclosed microfluidic channels.
    Huang YM; Uppalapati M; Hancock WO; Jackson TN
    Biomed Microdevices; 2007 Apr; 9(2):175-84. PubMed ID: 17195111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient designs for powering microscale devices with nanoscale biomolecular motors.
    Lin CT; Kao MT; Kurabayashi K; Meyhöfer E
    Small; 2006 Feb; 2(2):281-7. PubMed ID: 17193036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel microfluidic surface plasmon resonance imaging arrays.
    Ouellet E; Lausted C; Lin T; Yang CW; Hood L; Lagally ET
    Lab Chip; 2010 Mar; 10(5):581-8. PubMed ID: 20162233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip.
    Hiyama S; Moritani Y; Gojo R; Takeuchi S; Sutoh K
    Lab Chip; 2010 Oct; 10(20):2741-8. PubMed ID: 20714497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay.
    Bachand GD; Rivera SB; Carroll-Portillo A; Hess H; Bachand M
    Small; 2006 Mar; 2(3):381-5. PubMed ID: 17193055
    [No Abstract]   [Full Text] [Related]  

  • 7. Size sorting of kinesin-driven microtubules with topographical grooves on a chip.
    Sugita S; Murase T; Sakamoto N; Ohashi T; Sato M
    Lab Chip; 2010 Mar; 10(6):755-61. PubMed ID: 20221564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping and manipulating temperature-concentration phase diagrams using microfluidics.
    Selimović S; Gobeaux F; Fraden S
    Lab Chip; 2010 Jul; 10(13):1696-9. PubMed ID: 20407673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisited BIA-MS combination: entire "on-a-chip" processing leading to the proteins identification at low femtomole to sub-femtomole levels.
    Boireau W; Rouleau A; Lucchi G; Ducoroy P
    Biosens Bioelectron; 2009 Jan; 24(5):1121-7. PubMed ID: 18829299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic label-free screening chip: a marriage of multiplexing and high throughput analysis using surface plasmon resonance imaging.
    Krishnamoorthy G; Carlen ET; Bomer JG; Wijnperlé D; deBoer HL; van den Berg A; Schasfoort RB
    Lab Chip; 2010 Apr; 10(8):986-90. PubMed ID: 20358104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles.
    Brunner C; Wahnes C; Vogel V
    Lab Chip; 2007 Oct; 7(10):1263-71. PubMed ID: 17896009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Faradaic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors.
    Jacquot BC; Muñoz N; Branch DW; Kan EC
    Biosens Bioelectron; 2008 May; 23(10):1503-11. PubMed ID: 18281208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device.
    Mao X; Waldeisen JR; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1260-2. PubMed ID: 17896008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab-on-a-chip in vitro compartmentalization technologies for protein studies.
    Zhu Y; Power BE
    Adv Biochem Eng Biotechnol; 2008; 110():81-114. PubMed ID: 18594785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of laminar flow patterning for miniaturised biochemical assays.
    Regenberg B; Krühne U; Beyer M; Pedersen LH; Simon M; Thomas OR; Nielsen J; Ahl T
    Lab Chip; 2004 Dec; 4(6):654-7. PubMed ID: 15570380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternating current cloud point extraction on a microchip for preconcentration of membrane-associated biomolecules.
    Sasaki N; Hosokawa K; Maeda M
    Lab Chip; 2009 May; 9(9):1168-70. PubMed ID: 19370232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified scaling model for flow through a lattice of microfabricated posts.
    Srivastava N; Din C; Judson A; MacDonald NC; Meinhart CD
    Lab Chip; 2010 May; 10(9):1148-52. PubMed ID: 20390133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.