These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 19370250)
1. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Yoshimoto K; Ichino M; Nagasaki Y Lab Chip; 2009 May; 9(9):1286-9. PubMed ID: 19370250 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface. Otsuka H; Hirano A; Nagasaki Y; Okano T; Horiike Y; Kataoka K Chembiochem; 2004 Jun; 5(6):850-5. PubMed ID: 15174169 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
4. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Fukuda J; Sakai Y; Nakazawa K Biomaterials; 2006 Mar; 27(7):1061-70. PubMed ID: 16111746 [TBL] [Abstract][Full Text] [Related]
5. Hepatocyte viability and protein expression within hydrogel microstructures. Itle LJ; Koh WG; Pishko MV Biotechnol Prog; 2005; 21(3):926-32. PubMed ID: 15932275 [TBL] [Abstract][Full Text] [Related]
6. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Chua KN; Lim WS; Zhang P; Lu H; Wen J; Ramakrishna S; Leong KW; Mao HQ Biomaterials; 2005 May; 26(15):2537-47. PubMed ID: 15585256 [TBL] [Abstract][Full Text] [Related]
7. A comparison of microscope slide substrates for use in transfected cell microarrays. Delehanty JB; Shaffer KM; Lin B Biosens Bioelectron; 2004 Nov; 20(4):773-9. PubMed ID: 15522592 [TBL] [Abstract][Full Text] [Related]
8. Spheroid array of fetal mouse liver cells constructed on a PEG-gel micropatterned surface: upregulation of hepatic functions by co-culture with nonparenchymal liver cells. Kojima R; Yoshimoto K; Takahashi E; Ichino M; Miyoshi H; Nagasaki Y Lab Chip; 2009 Jul; 9(14):1991-3. PubMed ID: 19568664 [TBL] [Abstract][Full Text] [Related]
9. Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface. Tang L; Min J; Lee EC; Kim JS; Lee NY Biomed Microdevices; 2010 Feb; 12(1):13-21. PubMed ID: 19757071 [TBL] [Abstract][Full Text] [Related]
10. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Ito Y; Hasuda H; Sakuragi M; Tsuzuki S Acta Biomater; 2007 Nov; 3(6):1024-32. PubMed ID: 17644500 [TBL] [Abstract][Full Text] [Related]
11. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Fukuda J; Nakazawa K Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461 [TBL] [Abstract][Full Text] [Related]
12. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010 [TBL] [Abstract][Full Text] [Related]
13. Density control of poly(ethylene glycol) layer to regulate cellular attachment. Satomi T; Nagasaki Y; Kobayashi H; Otsuka H; Kataoka K Langmuir; 2007 Jun; 23(12):6698-703. PubMed ID: 17480105 [TBL] [Abstract][Full Text] [Related]
14. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Lan S; Veiseh M; Zhang M Biosens Bioelectron; 2005 Mar; 20(9):1697-708. PubMed ID: 15681184 [TBL] [Abstract][Full Text] [Related]
15. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Mougin K; Ham AS; Lawrence MB; Fernandez EJ; Hillier AC Langmuir; 2005 May; 21(11):4809-12. PubMed ID: 15896016 [TBL] [Abstract][Full Text] [Related]
16. Generation of contact-printing based poly(ethylene glycol) gradient surfaces with micrometer-sized steps. Cai Y; Yun YH; Newby BM Colloids Surf B Biointerfaces; 2010 Jan; 75(1):115-22. PubMed ID: 19744840 [TBL] [Abstract][Full Text] [Related]
17. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Cattani-Scholz A; Pedone D; Blobner F; Abstreiter G; Schwartz J; Tornow M; Andruzzi L Biomacromolecules; 2009 Mar; 10(3):489-96. PubMed ID: 19191582 [TBL] [Abstract][Full Text] [Related]
18. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Li D; Chen H; Glenn McClung W; Brash JL Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239 [TBL] [Abstract][Full Text] [Related]
20. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function. Nishikawa M; Yamamoto T; Kojima N; Kikuo K; Fujii T; Sakai Y Biotechnol Bioeng; 2008 Apr; 99(6):1472-81. PubMed ID: 17969156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]