These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 19370741)
1. Hydrogen-release mechanisms in lithium amidoboranes. Kim DY; Singh NJ; Lee HM; Kim KS Chemistry; 2009; 15(22):5598-604. PubMed ID: 19370741 [TBL] [Abstract][Full Text] [Related]
2. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles. Shevlin SA; Kerkeni B; Guo ZX Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360 [TBL] [Abstract][Full Text] [Related]
3. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Kim DY; Lee HM; Seo J; Shin SK; Kim KS Phys Chem Chem Phys; 2010; 12(20):5446-53. PubMed ID: 20372731 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)(n)H (n = 1-4) oligomers: importance of dihydrogen interactions. Li J; Kathmann SM; Hu HS; Schenter GK; Autrey T; Gutowski M Inorg Chem; 2010 Sep; 49(17):7710-20. PubMed ID: 20701247 [TBL] [Abstract][Full Text] [Related]
5. Infrared spectra and theoretical calculations of lithium hydride clusters in solid hydrogen, neon, and argon. Wang X; Andrews L J Phys Chem A; 2007 Jul; 111(27):6008-19. PubMed ID: 17547379 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen release studies of alkali metal amidoboranes. Luedtke AT; Autrey T Inorg Chem; 2010 Apr; 49(8):3905-10. PubMed ID: 20232793 [TBL] [Abstract][Full Text] [Related]
7. High-capacity hydrogen storage in lithium and sodium amidoboranes. Xiong Z; Yong CK; Wu G; Chen P; Shaw W; Karkamkar A; Autrey T; Jones MO; Johnson SR; Edwards PP; David WI Nat Mater; 2008 Feb; 7(2):138-41. PubMed ID: 18157135 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic investigation on the formation and dehydrogenation of calcium amidoborane ammoniate. Chua YS; Li W; Shaw WJ; Wu G; Autrey T; Xiong Z; Wong MW; Chen P ChemSusChem; 2012 May; 5(5):927-31. PubMed ID: 22290865 [TBL] [Abstract][Full Text] [Related]
10. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate. Ljubić I; Clary DC Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493 [TBL] [Abstract][Full Text] [Related]
11. Ab initio study on the hydrogen desorption from MH-NH3 (M = Li, Na, K) hydrogen storage systems. Yamane A; Shimojo F; Hoshino K; Ichikawa T; Kojima Y J Chem Phys; 2011 Mar; 134(12):124515. PubMed ID: 21456684 [TBL] [Abstract][Full Text] [Related]
12. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-. Lu J; Fang ZZ; Sohn HY Inorg Chem; 2006 Oct; 45(21):8749-54. PubMed ID: 17029387 [TBL] [Abstract][Full Text] [Related]
13. Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage. Wolstenholme DJ; Titah JT; Che FN; Traboulsee KT; Flogeras J; McGrady GS J Am Chem Soc; 2011 Oct; 133(41):16598-604. PubMed ID: 21859070 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen storage in LiAlH4: predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics. Kang JK; Lee JY; Muller RP; Goddard WA J Chem Phys; 2004 Dec; 121(21):10623-33. PubMed ID: 15549945 [TBL] [Abstract][Full Text] [Related]
18. Metal amidoboranes: superior double-hydrogen-transfer agents in the reduction of ketones and imines. Xu W; Wu G; Yao W; Fan H; Wu J; Chen P Chemistry; 2012 Oct; 18(43):13885-92. PubMed ID: 22991259 [TBL] [Abstract][Full Text] [Related]
19. Lithium cation as radical-polymerization catalyst. Clark T J Am Chem Soc; 2006 Aug; 128(34):11278-85. PubMed ID: 16925447 [TBL] [Abstract][Full Text] [Related]
20. A new Li-Al-N-H system for reversible hydrogen storage. Lu J; Fang ZZ; Sohn HY J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]