BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19370875)

  • 1. Salt stress induces production of melanin related metabolites in the phytopathogenic fungus Leptosphaeria maculans.
    Pedras MS; Yu Y
    Nat Prod Commun; 2009 Jan; 4(1):53-8. PubMed ID: 19370875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-driven discovery of metabolites from the phytopathogenic fungus Leptosphaeria maculans: structure and activity of leptomaculins A-E.
    Pedras MS; Yu Y
    Bioorg Med Chem; 2008 Sep; 16(17):8063-71. PubMed ID: 18701303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phytopathogenic fungi Leptosphaeria maculans and Leptosphaeria biglobosa: chemotaxonomical characterization of isolates and metabolite production in different culture media.
    Pedras MS; Chumala PB; Yu Y
    Can J Microbiol; 2007 Mar; 53(3):364-71. PubMed ID: 17538645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Camalexin induces detoxification of the phytoalexin brassinin in the plant pathogen Leptosphaeria maculans.
    Pedras MS; Jha M; Okeola OG
    Phytochemistry; 2005 Nov; 66(22):2609-16. PubMed ID: 16266734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New sesquiterpenic phytotoxins establish unprecedented relationship between different groups of blackleg fungal isolates.
    Pedras MS; Chumala PB; Venkatesham U
    Bioorg Med Chem; 2005 Apr; 13(7):2469-75. PubMed ID: 15755649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and biological activity of maculansin A, a phytotoxin from the phytopathogenic fungus Leptosphaeria maculans.
    Pedras MS; Yu Y
    Phytochemistry; 2008 Dec; 69(17):2966-71. PubMed ID: 18977007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phomapyrones from blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity.
    Pedras MS; Chumala PB
    Phytochemistry; 2005 Jan; 66(1):81-7. PubMed ID: 15649514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detoxification pathways of the phytoalexins brassilexin and sinalexin in Leptosphaeria maculans: isolation and synthesis of the elusive intermediate 3-formylindolyl-2-sulfonic acid.
    Pedras MS; Suchy M
    Org Biomol Chem; 2005 May; 3(10):2002-7. PubMed ID: 15889184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isosteric probes provide structural requirements essential for detoxification of the phytoalexin brassinin by the fungal pathogen Leptosphaeria maculans.
    Pedras MS; Jha M; Minic Z; Okeola OG
    Bioorg Med Chem; 2007 Sep; 15(18):6054-61. PubMed ID: 17616463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas.
    Howlett BJ; Idnurm A; Pedras MS
    Fungal Genet Biol; 2001 Jun; 33(1):1-14. PubMed ID: 11407881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam.
    Pedras MS; Biesenthal CJ
    Phytochemistry; 2001 Nov; 58(6):905-9. PubMed ID: 11684188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One metabolite, two pathways: convergence of polypropionate biosynthesis in fungi and marine molluscs.
    Cutignano A; Villani G; Fontana A
    Org Lett; 2012 Feb; 14(4):992-5. PubMed ID: 22316000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of the crucifer phytoalexins wasalexin A and B in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Suchý M
    Org Biomol Chem; 2006 Sep; 4(18):3526-35. PubMed ID: 17036150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma.
    Kogej T; Gorbushina AA; Gunde-Cimerman N
    Mycol Res; 2006 Jun; 110(Pt 6):713-24. PubMed ID: 16765585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of 1,8-dihydroxynaphthalene melanin in Monosporascus cannonballus and the analysis of hexaketide and pentaketide compounds produced by wild-type and pigmented isolates of the fungus.
    Wheeler MH; Bruton BD; Puckhaber LS; Zhang J; Stipanovic RD
    J Agric Food Chem; 2004 Jun; 52(13):4113-20. PubMed ID: 15212456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and metabolites of dithiocarbamates in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Sarma-Mamillapalle VK
    J Agric Food Chem; 2012 Aug; 60(32):7792-8. PubMed ID: 22823278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment.
    Kejžar A; Gobec S; Plemenitaš A; Lenassi M
    Fungal Biol; 2013 May; 117(5):368-79. PubMed ID: 23719222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the control of Leptosphaeria maculans: design, syntheses, biological activity, and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin.
    Pedras MS; Jha M
    Bioorg Med Chem; 2006 Jul; 14(14):4958-79. PubMed ID: 16616505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glutathione response to salt stress in the thermophilic fungus, Thermomyces lanuginosus.
    Jepsen HF; Pocsi I; Jensen B
    Acta Biol Hung; 2008 Sep; 59(3):357-63. PubMed ID: 18839702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi.
    Franzen AJ; Cunha MM; Miranda K; Hentschel J; Plattner H; da Silva MB; Salgado CG; de Souza W; Rozental S
    J Struct Biol; 2008 Apr; 162(1):75-84. PubMed ID: 18096404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.