These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 19371033)
1. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. Arnous A; Meyer AS J Agric Food Chem; 2009 May; 57(9):3611-9. PubMed ID: 19371033 [TBL] [Abstract][Full Text] [Related]
2. Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening. Vicens A; Fournand D; Williams P; Sidhoum L; Moutounet M; Doco T J Agric Food Chem; 2009 Apr; 57(7):2955-60. PubMed ID: 19334762 [TBL] [Abstract][Full Text] [Related]
3. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). Jensen JS; Demiray S; Egebo M; Meyer AS J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238 [TBL] [Abstract][Full Text] [Related]
5. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. Yilmaz Y; Toledo RT J Agric Food Chem; 2004 Jan; 52(2):255-60. PubMed ID: 14733505 [TBL] [Abstract][Full Text] [Related]
6. Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. Doco T; Williams P; Cheynier V J Agric Food Chem; 2007 Aug; 55(16):6643-9. PubMed ID: 17629303 [TBL] [Abstract][Full Text] [Related]
7. Composition and cellular localization of tannins in Cabernet Sauvignon skins during growth. Gagné S; Saucier C; Gény L J Agric Food Chem; 2006 Dec; 54(25):9465-71. PubMed ID: 17147434 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods. Gao Y; Fangel JU; Willats WG; Vivier MA; Moore JP Carbohydr Polym; 2015 Nov; 133():567-77. PubMed ID: 26344315 [TBL] [Abstract][Full Text] [Related]
9. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Hernández-Hierro JM; Quijada-Morín N; Martínez-Lapuente L; Guadalupe Z; Ayestarán B; Rivas-Gonzalo JC; Escribano-Bailón MT Food Chem; 2014 Mar; 146():41-7. PubMed ID: 24176311 [TBL] [Abstract][Full Text] [Related]
10. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific and developmental modifications of grape cell walls influence the adsorption of proanthocyanidins. Bindon KA; Bacic A; Kennedy JA J Agric Food Chem; 2012 Sep; 60(36):9249-60. PubMed ID: 22860923 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins. Fernández K; Kennedy JA; Agosin E J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309 [TBL] [Abstract][Full Text] [Related]
13. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. Bindon KA; Kennedy JA J Agric Food Chem; 2011 Mar; 59(6):2696-707. PubMed ID: 21351801 [TBL] [Abstract][Full Text] [Related]
14. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Dallies N; François J; Paquet V Yeast; 1998 Oct; 14(14):1297-306. PubMed ID: 9802208 [TBL] [Abstract][Full Text] [Related]
15. Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L. Ruberto G; Renda A; Amico V; Tringali C Bioresour Technol; 2008 Jan; 99(2):260-8. PubMed ID: 17321134 [TBL] [Abstract][Full Text] [Related]
17. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Castillo-Muñoz N; Fernández-González M; Gómez-Alonso S; García-Romero E; Hermosín-Gutiérrez I J Agric Food Chem; 2009 Sep; 57(17):7883-91. PubMed ID: 19673489 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. Obreque-Slier E; Peña-Neira A; López-Solís R; Zamora-Marín F; Ricardo-da Silva JM; Laureano O J Agric Food Chem; 2010 Mar; 58(6):3591-9. PubMed ID: 20163111 [TBL] [Abstract][Full Text] [Related]
19. Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety cabernet sauvignon. Sala C; Busto O; Guasch J; Zamora F J Agric Food Chem; 2004 Jun; 52(11):3492-7. PubMed ID: 15161221 [TBL] [Abstract][Full Text] [Related]
20. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. Bindon KA; Smith PA; Holt H; Kennedy JA J Agric Food Chem; 2010 Oct; 58(19):10736-46. PubMed ID: 20845924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]