These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 19371047)
1. Effect of microphase separation on the protein resistance of a polymeric surface. Ma C; Hou Y; Liu S; Zhang G Langmuir; 2009 Aug; 25(16):9467-72. PubMed ID: 19371047 [TBL] [Abstract][Full Text] [Related]
2. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Lazos D; Franzka S; Ulbricht M Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960 [TBL] [Abstract][Full Text] [Related]
3. Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: effects of main chain and side chain lengths of grafts. Jin Z; Feng W; Beisser K; Zhu S; Sheardown H; Brash JL Colloids Surf B Biointerfaces; 2009 Apr; 70(1):53-9. PubMed ID: 19150594 [TBL] [Abstract][Full Text] [Related]
4. Microphase separation structure influences protein interactions with poly(urethane urea) surfaces. Xu LC; Siedlecki CA J Biomed Mater Res A; 2010 Jan; 92(1):126-36. PubMed ID: 19165784 [TBL] [Abstract][Full Text] [Related]
5. Protein-resistant polyurethane via surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2009 Dec; 91(4):1189-201. PubMed ID: 19148931 [TBL] [Abstract][Full Text] [Related]
6. A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium. Park S; Chi YS; Choi IS; Seong J; Jon S J Nanosci Nanotechnol; 2006 Nov; 6(11):3507-11. PubMed ID: 17252800 [TBL] [Abstract][Full Text] [Related]
7. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Loh XJ; Goh SH; Li J Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
9. Calorimetric and structural investigation of the interaction of lysozyme and bovine serum albumin with poly(ethylene oxide) and its copolymers. Almeida NL; Oliveira CL; Torriani IL; Loh W Colloids Surf B Biointerfaces; 2004 Oct; 38(1-2):67-76. PubMed ID: 15465306 [TBL] [Abstract][Full Text] [Related]
10. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2010 Dec; 95(4):1223-32. PubMed ID: 20939048 [TBL] [Abstract][Full Text] [Related]
12. Use of PLL-g-PEG in micro-fluidic devices for localizing selective and specific protein binding. Marie R; Beech JP; Vörös J; Tegenfeldt JO; Höök F Langmuir; 2006 Nov; 22(24):10103-8. PubMed ID: 17107006 [TBL] [Abstract][Full Text] [Related]
13. Dynamic protein adsorption at the polyurethane copolymer/water interface. Yaseen M; Salacinski HJ; Seifalian AM; Lu JR Biomed Mater; 2008 Sep; 3(3):034123. PubMed ID: 18765894 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of reversible poly(dimethylsiloxane) surfaces via host-guest chemistry and their repeated utilization in cardiac biomarker analysis. Zhang Y; Ren L; Tu Q; Wang X; Liu R; Li L; Wang JC; Liu W; Xu J; Wang J Anal Chem; 2011 Dec; 83(24):9651-9. PubMed ID: 22043937 [TBL] [Abstract][Full Text] [Related]
16. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations. Jung IK; Bae JW; Choi WS; Choi JH; Park KD J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283 [TBL] [Abstract][Full Text] [Related]
17. An X-ray spectromicroscopy study of protein adsorption to polystyrene-poly(ethylene oxide) blends. Leung BO; Hitchcock AP; Brash JL; Scholl A; Doran A Langmuir; 2010 Sep; 26(18):14759-65. PubMed ID: 20795675 [TBL] [Abstract][Full Text] [Related]
18. Preparation of polyurethane with zwitterionic side chains and their protein resistance. Ma C; Zhou H; Wu B; Zhang G ACS Appl Mater Interfaces; 2011 Feb; 3(2):455-61. PubMed ID: 21222476 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. Zhang T; Song Z; Chen H; Yu X; Jiang Z J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962 [TBL] [Abstract][Full Text] [Related]
20. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]