These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 19371055)
1. Significant change in electronic structures of heme upon reduction by strong Coulomb repulsion between Fe d electrons. Kamiya K; Yamamoto S; Shiraishi K; Oshiyama A J Phys Chem B; 2009 May; 113(19):6866-72. PubMed ID: 19371055 [TBL] [Abstract][Full Text] [Related]
2. Electronic structures of heme a of cytochrome c oxidase in the redox states--charge density migration to the propionate groups of heme a. Takano Y; Nakamura H J Comput Chem; 2010 Apr; 31(5):954-62. PubMed ID: 19645053 [TBL] [Abstract][Full Text] [Related]
3. Geometric and electronic structure of the heme-peroxo-copper complex [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4). Del Río D; Sarangi R; Chufán EE; Karlin KD; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2005 Aug; 127(34):11969-78. PubMed ID: 16117536 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830 [TBL] [Abstract][Full Text] [Related]
5. Electronic structure of linear thiophenolate-bridged heteronuclear complexes [LFeMFeL](n)(+) (M = Cr, Co, Fe; n = 1-3): a combination of kinetic exchange interaction and electron delocalization. Chibotaru LF; Girerd JJ; Blondin G; Glaser T; Wieghardt K J Am Chem Soc; 2003 Oct; 125(41):12615-30. PubMed ID: 14531706 [TBL] [Abstract][Full Text] [Related]
6. Electronic structure of selected FeNO7 complexes in heme and non-heme architectures: a density functional and multireference ab initio study. Radoń M; Broclawik E; Pierloot K J Phys Chem B; 2010 Jan; 114(3):1518-28. PubMed ID: 20047294 [TBL] [Abstract][Full Text] [Related]
7. Characterization of electronic structure and properties of a Bis(histidine) heme model complex. Smith DM; Dupuis M; Vorpagel ER; Straatsma TP J Am Chem Soc; 2003 Mar; 125(9):2711-7. PubMed ID: 12603159 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the {FeNO}6 complex. Walker FA J Inorg Biochem; 2005 Jan; 99(1):216-36. PubMed ID: 15598503 [TBL] [Abstract][Full Text] [Related]
9. The effect of water on the Fe(3+)/Fe(2+) reduction potential of heme. Edholm O; Nordlander P; Chen W; Ohlsson PI; Smith ML; Paul J Biochem Biophys Res Commun; 2000 Feb; 268(3):683-7. PubMed ID: 10679265 [TBL] [Abstract][Full Text] [Related]
10. Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(I) oxidation state. Porro CS; Kumar D; de Visser SP Phys Chem Chem Phys; 2009 Nov; 11(43):10219-26. PubMed ID: 19865780 [TBL] [Abstract][Full Text] [Related]
11. The electronic structure of iron corroles: a combined experimental and quantum chemical study. Ye S; Tuttle T; Bill E; Simkhovich L; Gross Z; Thiel W; Neese F Chemistry; 2008; 14(34):10839-51. PubMed ID: 18956397 [TBL] [Abstract][Full Text] [Related]
12. Modulation of metal displacements in a saddle distorted macrocycle: synthesis, structure, and properties of high-spin Fe(III) porphyrins and implications for the hemoproteins. Patra R; Chaudhary A; Ghosh SK; Rath SP Inorg Chem; 2008 Sep; 47(18):8324-35. PubMed ID: 18700752 [TBL] [Abstract][Full Text] [Related]
13. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation? de Visser SP; Tahsini L; Nam W Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895 [TBL] [Abstract][Full Text] [Related]
14. Tuning the oxidation level, the spin state, and the degree of electron delocalization in homo- and heteroleptic bis(alpha-diimine)iron complexes. Khusniyarov MM; Weyhermüller T; Bill E; Wieghardt K J Am Chem Soc; 2009 Jan; 131(3):1208-21. PubMed ID: 19105752 [TBL] [Abstract][Full Text] [Related]
15. Electronic coupling between heme electron-transfer centers and its decay with distance depends strongly on relative orientation. Smith DM; Rosso KM; Dupuis M; Valiev M; Straatsma TP J Phys Chem B; 2006 Aug; 110(31):15582-8. PubMed ID: 16884282 [TBL] [Abstract][Full Text] [Related]
16. DFT calculations suggest a new type of self-protection and self-inhibition mechanism in the mammalian heme enzyme myeloperoxidase: nucleophilic addition of a functional water rather than one-electron reduction. Sicking W; Somnitz H; Schmuck C Chemistry; 2012 Aug; 18(35):10937-48. PubMed ID: 22829409 [TBL] [Abstract][Full Text] [Related]
17. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections. Khvostichenko D; Choi A; Boulatov R J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545 [TBL] [Abstract][Full Text] [Related]
18. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. Ali ME; Sanyal B; Oppeneer PM J Phys Chem B; 2012 May; 116(20):5849-59. PubMed ID: 22512398 [TBL] [Abstract][Full Text] [Related]
19. Symmetry and bonding in metalloporphyrins. A modern implementation for the bonding analyses of five- and six-coordinate high-spin iron(III)-porphyrin complexes through density functional calculation and NMR spectroscopy. Cheng RJ; Chen PY; Lovell T; Liu T; Noodleman L; Case DA J Am Chem Soc; 2003 Jun; 125(22):6774-83. PubMed ID: 12769588 [TBL] [Abstract][Full Text] [Related]
20. What external perturbations influence the electronic properties of catalase compound I? de Visser SP Inorg Chem; 2006 Nov; 45(23):9551-7. PubMed ID: 17083257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]