These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627 [TBL] [Abstract][Full Text] [Related]
3. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment. Fajardo-Cavazos P; Schuerger AC; Nicholson WL Appl Environ Microbiol; 2008 Aug; 74(16):5159-67. PubMed ID: 18567687 [TBL] [Abstract][Full Text] [Related]
4. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers. Schuerger AC; Richards JT; Hintze PE; Kern RG Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871 [TBL] [Abstract][Full Text] [Related]
5. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community. Hansen AA; Jensen LL; Kristoffersen T; Mikkelsen K; Merrison J; Finster KW; Lomstein BA Astrobiology; 2009 Mar; 9(2):229-40. PubMed ID: 19371163 [TBL] [Abstract][Full Text] [Related]
6. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions. Kerney KR; Schuerger AC Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388 [TBL] [Abstract][Full Text] [Related]
7. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility. Khodadad CL; Wong GM; James LM; Thakrar PJ; Lane MA; Catechis JA; Smith DJ Astrobiology; 2017 Apr; 17(4):337-350. PubMed ID: 28323456 [TBL] [Abstract][Full Text] [Related]
8. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695 [TBL] [Abstract][Full Text] [Related]
9. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection. Tauscher C; Schuerger AC; Nicholson WL Astrobiology; 2006 Aug; 6(4):592-605. PubMed ID: 16916285 [TBL] [Abstract][Full Text] [Related]
10. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Vaishampayan PA; Rabbow E; Horneck G; Venkateswaran KJ Astrobiology; 2012 May; 12(5):487-97. PubMed ID: 22680694 [TBL] [Abstract][Full Text] [Related]
11. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux. Baqué M; Verseux C; Böttger U; Rabbow E; de Vera JP; Billi D Orig Life Evol Biosph; 2016 Jun; 46(2-3):289-310. PubMed ID: 26530341 [TBL] [Abstract][Full Text] [Related]
12. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions. Frösler J; Panitz C; Wingender J; Flemming HC; Rettberg P Astrobiology; 2017 May; 17(5):431-447. PubMed ID: 28520474 [TBL] [Abstract][Full Text] [Related]
13. Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. Smith SA; Benardini JN; Anderl D; Ford M; Wear E; Schrader M; Schubert W; DeVeaux L; Paszczynski A; Childers SE Astrobiology; 2017 Mar; 17(3):253-265. PubMed ID: 28282220 [TBL] [Abstract][Full Text] [Related]
14. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia. Nicholson WL; Schuerger AC Astrobiology; 2005 Aug; 5(4):536-44. PubMed ID: 16078870 [TBL] [Abstract][Full Text] [Related]
15. Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. Serrano P; Alawi M; de Vera JP; Wagner D Astrobiology; 2019 Feb; 19(2):197-208. PubMed ID: 30742498 [TBL] [Abstract][Full Text] [Related]
16. Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Fendrihan S; Bérces A; Lammer H; Musso M; Rontó G; Polacsek TK; Holzinger A; Kolb C; Stan-Lotter H Astrobiology; 2009; 9(1):104-12. PubMed ID: 19215203 [TBL] [Abstract][Full Text] [Related]
17. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Amato P; Doyle SM; Battista JR; Christner BC Astrobiology; 2010 Oct; 10(8):789-98. PubMed ID: 21087159 [TBL] [Abstract][Full Text] [Related]
18. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens. Berry BJ; Jenkins DG; Schuerger AC Appl Environ Microbiol; 2010 Apr; 76(8):2377-86. PubMed ID: 20154104 [TBL] [Abstract][Full Text] [Related]
19. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds. Hagen CA; Hawrylewicz EJ; Anderson BT; Cephus ML Life Sci Space Res; 1970; 8():53-8. PubMed ID: 12664918 [TBL] [Abstract][Full Text] [Related]
20. Response of microorganisms to a simulated Martian environment. Hawrylewicz EJ; Hagen CA; Ehrlich R Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]