These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19371747)

  • 1. Structure and in vivo requirement of the yeast Spt6 SH2 domain.
    Dengl S; Mayer A; Sun M; Cramer P
    J Mol Biol; 2009 May; 389(1):211-25. PubMed ID: 19371747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain.
    Liu J; Zhang J; Gong Q; Xiong P; Huang H; Wu B; Lu G; Wu J; Shi Y
    J Biol Chem; 2011 Aug; 286(33):29218-29226. PubMed ID: 21676864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain.
    Close D; Johnson SJ; Sdano MA; McDonald SM; Robinson H; Formosa T; Hill CP
    J Mol Biol; 2011 May; 408(4):697-713. PubMed ID: 21419780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD).
    Sun M; Larivière L; Dengl S; Mayer A; Cramer P
    J Biol Chem; 2010 Dec; 285(53):41597-603. PubMed ID: 20926372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel SH2 recognition mechanism recruits Spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription.
    Sdano MA; Fulcher JM; Palani S; Chandrasekharan MB; Parnell TJ; Whitby FG; Formosa T; Hill CP
    Elife; 2017 Aug; 6():. PubMed ID: 28826505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
    Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK
    Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro.
    Brázda P; Krejčíková M; Kasiliauskaite A; Šmiřáková E; Klumpler T; Vácha R; Kubíček K; Štefl R
    J Mol Biol; 2020 Jun; 432(14):4092-4107. PubMed ID: 32439331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export.
    Yoh SM; Cho H; Pickle L; Evans RM; Jones KA
    Genes Dev; 2007 Jan; 21(2):160-74. PubMed ID: 17234882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 1999 Nov; 293(4):971-85. PubMed ID: 10543978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II.
    Connell Z; Parnell TJ; McCullough LL; Hill CP; Formosa T
    Nucleic Acids Res; 2022 Jan; 50(2):784-802. PubMed ID: 34967414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncanonical tandem SH2 enables interaction of elongation factor Spt6 with RNA polymerase II.
    Diebold ML; Loeliger E; Koch M; Winston F; Cavarelli J; Romier C
    J Biol Chem; 2010 Dec; 285(49):38389-98. PubMed ID: 20926373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
    Dronamraju R; Strahl BD
    Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding.
    McDonald SM; Close D; Xin H; Formosa T; Hill CP
    Mol Cell; 2010 Dec; 40(5):725-35. PubMed ID: 21094070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A yeast SH2 domain.
    Maclennan AJ; Shaw G
    Trends Biochem Sci; 1993 Dec; 18(12):464-5. PubMed ID: 8108857
    [No Abstract]   [Full Text] [Related]  

  • 15. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5.
    Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J
    Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck.
    Eck MJ; Shoelson SE; Harrison SC
    Nature; 1993 Mar; 362(6415):87-91. PubMed ID: 7680435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate.
    Hoedemaeker FJ; Siegal G; Roe SM; Driscoll PC; Abrahams JP
    J Mol Biol; 1999 Oct; 292(4):763-70. PubMed ID: 10525402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription elongation factors repress transcription initiation from cryptic sites.
    Kaplan CD; Laprade L; Winston F
    Science; 2003 Aug; 301(5636):1096-9. PubMed ID: 12934008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface.
    Lubman OY; Waksman G
    J Mol Biol; 2002 Feb; 316(2):291-304. PubMed ID: 11851339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the "two-pronged plug two-holed socket" model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study.
    Bradshaw JM; Grucza RA; Ladbury JE; Waksman G
    Biochemistry; 1998 Jun; 37(25):9083-90. PubMed ID: 9636054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.