These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1056 related articles for article (PubMed ID: 19371778)

  • 41. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard.
    LeDuc DL; AbdelSamie M; Móntes-Bayon M; Wu CP; Reisinger SJ; Terry N
    Environ Pollut; 2006 Nov; 144(1):70-6. PubMed ID: 16515825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review.
    Del Buono D; Terzano R; Panfili I; Bartucca ML
    Int J Phytoremediation; 2020; 22(8):789-803. PubMed ID: 31960714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight.
    Ramos JL; González-Pérez MM; Caballero A; van Dillewijn P
    Curr Opin Biotechnol; 2005 Jun; 16(3):275-81. PubMed ID: 15961028
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin.
    Goel A; Kumar G; Payne GF; Dube SK
    Nat Biotechnol; 1997 Feb; 15(2):174-7. PubMed ID: 9035145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Some aspects of interindividual variations in the metabolism of xenobiotics.
    Tamási V; Vereczkey L; Falus A; Monostory K
    Inflamm Res; 2003 Aug; 52(8):322-33. PubMed ID: 14504670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
    Kathuria H; Giri J; Nataraja KN; Murata N; Udayakumar M; Tyagi AK
    Plant Biotechnol J; 2009 Aug; 7(6):512-26. PubMed ID: 19490479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced transformation of tnt by tobacco plants expressing a bacterial nitroreductase.
    Hannink NK; Subramanian M; Rosser SJ; Basran A; Murray JA; Shanks JV; Bruce NC
    Int J Phytoremediation; 2007; 9(5):385-401. PubMed ID: 18246725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolism of xenobiotics and chemical carcinogenesis.
    Lang M; Pelkonen O
    IARC Sci Publ; 1999; (148):13-22. PubMed ID: 10493245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plant tissue culture of fast-growing trees for phytoremediation research.
    Couselo JL; Corredoira E; Vieitez AM; Ballester A
    Methods Mol Biol; 2012; 877():247-63. PubMed ID: 22610633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transgenic plants for phytoremediation.
    Maestri E; Marmiroli N
    Int J Phytoremediation; 2011; 13 Suppl 1():264-79. PubMed ID: 22046764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward protein engineering for phytoremediation: possibilities and challenges.
    Jez JM
    Int J Phytoremediation; 2011; 13 Suppl 1():77-89. PubMed ID: 22046752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phytotransformation of 2,4-dinitrotoluene in arabidopsis thaliana: toxicity, fate, and gene expression studies in vitro.
    Yoon JM; Oliver DJ; Shanks JV
    Biotechnol Prog; 2006; 22(6):1524-31. PubMed ID: 17137297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene.
    Wang L; Samac DA; Shapir N; Wackett LP; Vance CP; Olszewski NE; Sadowsky MJ
    Plant Biotechnol J; 2005 Sep; 3(5):475-86. PubMed ID: 17173634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.
    Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE
    Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of microbial genes to recalcitrant biomass utilization and environmental conservation.
    Ohmiya K; Sakka K; Kimura T; Morimoto K
    J Biosci Bioeng; 2003; 95(6):549-61. PubMed ID: 16233456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using soil bacteria to facilitate phytoremediation.
    Glick BR
    Biotechnol Adv; 2010; 28(3):367-74. PubMed ID: 20149857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase.
    Hannink N; Rosser SJ; French CE; Basran A; Murray JA; Nicklin S; Bruce NC
    Nat Biotechnol; 2001 Dec; 19(12):1168-72. PubMed ID: 11731787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial degradation of explosives and related compounds.
    Gorontzy T; Drzyzga O; Kahl MW; Bruns-Nagel D; Breitung J; von Loew E; Blotevogel KH
    Crit Rev Microbiol; 1994; 20(4):265-84. PubMed ID: 7857518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 53.