These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19372422)

  • 1. Strengthening materials by engineering coherent internal boundaries at the nanoscale.
    Lu K; Lu L; Suresh S
    Science; 2009 Apr; 324(5925):349-52. PubMed ID: 19372422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh strength and high electrical conductivity in copper.
    Lu L; Shen Y; Chen X; Qian L; Lu K
    Science; 2004 Apr; 304(5669):422-6. PubMed ID: 15031435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.
    Liu J; Jin Y; Fang X; Chen C; Feng Q; Liu X; Chen Y; Suo T; Zhao F; Huang T; Wang H; Wang X; Fang Y; Wei Y; Meng L; Lu J; Yang W
    Sci Rep; 2016 Oct; 6():35345. PubMed ID: 27739481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale coherent interface strengthening of Mg alloys.
    Peng Q; Ge B; Fu H; Sun Y; Zu Q; Huang J
    Nanoscale; 2018 Sep; 10(37):18028-18035. PubMed ID: 30229782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
    Bufford D; Liu Y; Wang J; Wang H; Zhang X
    Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins.
    Fu H; Ge B; Xin Y; Wu R; Fernandez C; Huang J; Peng Q
    Nano Lett; 2017 Oct; 17(10):6117-6124. PubMed ID: 28857573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of atomic diffusion at twin-modified grain boundaries in copper.
    Chen KC; Wu WW; Liao CN; Chen LJ; Tu KN
    Science; 2008 Aug; 321(5892):1066-9. PubMed ID: 18719278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sliding of coherent twin boundaries.
    Wang ZJ; Li QJ; Li Y; Huang LC; Lu L; Dao M; Li J; Ma E; Suresh S; Shan ZW
    Nat Commun; 2017 Oct; 8(1):1108. PubMed ID: 29062092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
    Fan L; Yang T; Zhao Y; Luan J; Zhou G; Wang H; Jiao Z; Liu CT
    Nat Commun; 2020 Dec; 11(1):6240. PubMed ID: 33288762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A material with electrically tunable strength and flow stress.
    Jin HJ; Weissmüller J
    Science; 2011 Jun; 332(6034):1179-82. PubMed ID: 21636769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking effect of twin boundaries on partial dislocation emission from void surfaces.
    Zhang L; Zhou H; Qu S
    Nanoscale Res Lett; 2012 Mar; 7(1):164. PubMed ID: 22385908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering.
    Salje EK
    Chemphyschem; 2010 Apr; 11(5):940-50. PubMed ID: 20217888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twin Boundaries merely as Intrinsically Kinematic Barriers for Screw Dislocation Motion in FCC Metals.
    Zhang J; Zhang H; Ye H; Zheng Y
    Sci Rep; 2016 Mar; 6():22893. PubMed ID: 26961273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and properties of coherent twinning superlattice nanowires.
    Wood EL; Sansoz F
    Nanoscale; 2012 Sep; 4(17):5268-76. PubMed ID: 22833267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical resistance of long conjugated molecular wires.
    Ho Choi S; Kim B; Frisbie CD
    Science; 2008 Jun; 320(5882):1482-6. PubMed ID: 18556556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals.
    Zhu T; Li J; Samanta A; Kim HG; Suresh S
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3031-6. PubMed ID: 17360604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.