These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19372544)

  • 1. Niacin status and treatment-related leukemogenesis.
    Kirkland JB
    Mol Cancer Ther; 2009 Apr; 8(4):725-32. PubMed ID: 19372544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niacin status and genomic instability in bone marrow cells; mechanisms favoring the progression of leukemogenesis.
    Kirkland JB
    Subcell Biochem; 2012; 56():21-36. PubMed ID: 22116692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Niacin deficiency alters p53 expression and impairs etoposide-induced cell cycle arrest and apoptosis in rat bone marrow cells.
    Spronck JC; Nickerson JL; Kirkland JB
    Nutr Cancer; 2007; 57(1):88-99. PubMed ID: 17516866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats.
    Boyonoski AC; Spronck JC; Gallacher LM; Jacobs RM; Shah GM; Poirier GG; Kirkland JB
    J Nutr; 2002 Jan; 132(1):108-14. PubMed ID: 11773516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niacin deficiency increases spontaneous and etoposide-induced chromosomal instability in rat bone marrow cells in vivo.
    Spronck JC; Kirkland JB
    Mutat Res; 2002 Oct; 508(1-2):83-97. PubMed ID: 12379464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow.
    Kostecki LM; Thomas M; Linford G; Lizotte M; Toxopeus L; Bartleman AP; Kirkland JB
    Mutat Res; 2007 Dec; 625(1-2):50-61. PubMed ID: 17618655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic DNA damage and niacin deficiency enhance cell injury and cause unusual interactions in NAD and poly(ADP-ribose) metabolism in rat bone marrow.
    Spronck JC; Bartleman AP; Boyonoski AC; Kirkland JB
    Nutr Cancer; 2003; 45(1):124-31. PubMed ID: 12791512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological intakes of niacin increase bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats.
    Boyonoski AC; Spronck JC; Jacobs RM; Shah GM; Poirier GG; Kirkland JB
    J Nutr; 2002 Jan; 132(1):115-20. PubMed ID: 11773517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of niacin deficiency on diethylnitrosamine-induced hepatic poly(ADP-ribose) levels and altered hepatic foci in the Fischer-344 rat.
    Rawling JM; Jackson TM; Roebuck BD; Poirier GG; Kirkland JB
    Nutr Cancer; 1995; 24(2):111-9. PubMed ID: 8584447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung poly(ADP-ribose) and NAD+ concentrations during hyperoxia and niacin deficiency in the Fischer-344 rat.
    Rawling JM; ApSimon MM; Kirkland JB
    Free Radic Biol Med; 1996; 20(6):865-71. PubMed ID: 8728036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niacin and carcinogenesis.
    Kirkland JB
    Nutr Cancer; 2003; 46(2):110-8. PubMed ID: 14690785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Niacin requirements for genomic stability.
    Kirkland JB
    Mutat Res; 2012 May; 733(1-2):14-20. PubMed ID: 22138132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinic acid supplementation: effects on niacin status, cytogenetic damage, and poly(ADP-ribosylation) in lymphocytes of smokers.
    Hageman GJ; Stierum RH; van Herwijnen MH; van der Veer MS; Kleinjans JC
    Nutr Cancer; 1998; 32(2):113-20. PubMed ID: 9919621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary niacin deficiency lowers tissue poly(ADP-ribose) and NAD+ concentrations in Fischer-344 rats.
    Rawling JM; Jackson TM; Driscoll ER; Kirkland JB
    J Nutr; 1994 Sep; 124(9):1597-603. PubMed ID: 8089727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in Long-Evans rats.
    Bartleman AP; Jacobs R; Kirkland JB
    Nutr Cancer; 2008; 60(2):251-8. PubMed ID: 18444158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Niacin status, NAD distribution and ADP-ribose metabolism.
    Kirkland JB
    Curr Pharm Des; 2009; 15(1):3-11. PubMed ID: 19149597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribose) polymerase activity and DNA strand breaks are affected in tissues of niacin-deficient rats.
    Zhang JZ; Henning SM; Swendseid ME
    J Nutr; 1993 Aug; 123(8):1349-55. PubMed ID: 8336204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.
    Weidele K; Kunzmann A; Schmitz M; Beneke S; Bürkle A
    Biochem Pharmacol; 2010 Oct; 80(7):1103-12. PubMed ID: 20599792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour?
    Young GS; Kirkland JB
    Nutr Res Rev; 2008 Jun; 21(1):42-55. PubMed ID: 19079853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability.
    Hageman GJ; Stierum RH
    Mutat Res; 2001 Apr; 475(1-2):45-56. PubMed ID: 11295153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.