These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19373389)

  • 1. Enhancement and inhibition of photolumincescence in hydrogenated amorphous silicon nitride microcavities.
    Serpenguzel A; Aydinli A; Bek A
    Opt Express; 1997 Sep; 1(5):108-13. PubMed ID: 19373389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Investigation of Near-Infrared Fabry-Pérot Microcavity Graphene/Silicon Schottky Photodetectors Based on Double Silicon on Insulator Substrates.
    Casalino M
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32707786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field localization and enhanced Second-Harmonic Generation in silicon-based microcavities.
    Descrovi E; Ricciardi C; Giorgis F; Lérondel G; Blaize S; Pang CX; Bachelot R; Royer P; Lettieri S; Gesuele F; Maddalena P; Liscidini M
    Opt Express; 2007 Apr; 15(7):4159-67. PubMed ID: 19532659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical and numerical design of a hybrid Fabry-Perot plano-concave microcavity for hexagonal boron nitride.
    Ortiz-Huerta F; Garay-Palmett K
    Beilstein J Nanotechnol; 2022; 13():1030-1037. PubMed ID: 36247527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous silicon and amorphous silicon nitride films prepared by a plasma-enhanced chemical vapor deposition process as optical coating materials.
    Tsai RY; Kuo LC; Ho FC
    Appl Opt; 1993 Oct; 32(28):5561-6. PubMed ID: 20856369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure.
    Yang L; Motohisa J; Fukui T; Jia LX; Zhang L; Geng MM; Chen P; Liu YL
    Opt Express; 2009 May; 17(11):9337-46. PubMed ID: 19466186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Q-factor Al
    Su Z; Li N; Frankis HC; Magden ES; Adam TN; Leake G; Coolbaugh D; Bradley JDB; Watts MR
    Opt Express; 2018 Apr; 26(9):11161-11170. PubMed ID: 29716040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase stabilization by rapid thermal annealing in amorphous hydrogenated silicon nitride film.
    Singh SP; Srivastava P; Ghosh S; Khan SA; Vijaya Prakash G
    J Phys Condens Matter; 2009 Mar; 21(9):095010. PubMed ID: 21817383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Bonding structure in silicon nitride thin films containing silicon nano-particles].
    Ding WG; Yu W; Yang YB; Zhang JY; Fu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1798-801. PubMed ID: 17205723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and control of the origin of photoluminescence from silicon quantum dots.
    Hao HL; Shen WZ
    Nanotechnology; 2008 Nov; 19(45):455704. PubMed ID: 21832793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device.
    Della Corte FG; Rao S; Coppola G; Summonte C
    Opt Express; 2011 Feb; 19(4):2941-51. PubMed ID: 21369117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride.
    Park NM; Choi CJ; Seong TY; Park SJ
    Phys Rev Lett; 2001 Feb; 86(7):1355-7. PubMed ID: 11178082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.
    Patton RJ; Wood MG; Reano RM
    Opt Lett; 2017 Nov; 42(21):4239-4242. PubMed ID: 29088133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride.
    Yang L; Abeles B; Eberhardt W; Stasiewski H; Sondericker D
    Phys Rev B Condens Matter; 1989 Feb; 39(6):3801-3816. PubMed ID: 9948704
    [No Abstract]   [Full Text] [Related]  

  • 16. Metastable effects in hydrogenated amorphous silicon-silicon nitride multilayers.
    Song YH; Eun CC; Lee C; Jang J
    Phys Rev B Condens Matter; 1990 Dec; 42(18):11862-11868. PubMed ID: 9995496
    [No Abstract]   [Full Text] [Related]  

  • 17. Creation of near-interface defects in hydrogenated amorphous silicon-silicon nitride heterojunctions: The role of hydrogen.
    Jackson WB; Moyer MD
    Phys Rev B Condens Matter; 1987 Oct; 36(11):6217-6220. PubMed ID: 9942322
    [No Abstract]   [Full Text] [Related]  

  • 18. Microcavities with suspended subwavelength structured mirrors.
    Naesby A; Dantan A
    Opt Express; 2018 Nov; 26(23):29886-29894. PubMed ID: 30469947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced ultraviolet photoluminescence from the hybrid plasmonic Fabry-Perot microcavity of Ag/ZnO microwires.
    Jiang MM; Zhao B; Chen HY; Zhao DX; Shan CX; Shen DZ
    Nanoscale; 2014; 6(3):1354-61. PubMed ID: 24292373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ thickness control during plasma deposition of hydrogenated amorphous silicon films by time-resolved microwave conductivity measurements.
    Neitzert HC; Hirsch W; Kunst M; Nell ME
    Appl Opt; 1995 Feb; 34(4):676-80. PubMed ID: 20963168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.