BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19373451)

  • 41. An imprinted signature helps isolate ESC-equivalent iPSCs.
    Lujan E; Wernig M
    Cell Res; 2010 Sep; 20(9):974-6. PubMed ID: 20697429
    [No Abstract]   [Full Text] [Related]  

  • 42. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.
    Poon MW; He J; Fang X; Zhang Z; Wang W; Wang J; Qiu F; Tse HF; Li W; Liu Z; Lian Q
    PLoS One; 2015; 10(7):e0131288. PubMed ID: 26131692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is iPS cell the panacea?
    Ou L; Wang X; Zou F
    IUBMB Life; 2010 Mar; 62(3):170-5. PubMed ID: 20146301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells.
    Sanna D; Sanna A; Mara L; Pilichi S; Mastinu A; Chessa F; Pani L; Dattena M
    Cell Biol Int; 2009 Dec; 34(1):53-60. PubMed ID: 19947952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells.
    Fuet A; Montillet G; Jean C; Aubel P; Kress C; Rival-Gervier S; Pain B
    Stem Cell Reports; 2018 Nov; 11(5):1272-1286. PubMed ID: 30318291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pluripotency Stemness and Cancer: More Questions than Answers.
    Hatina J; Kripnerová M; Houdek Z; Pešta M; Tichánek F
    Adv Exp Med Biol; 2022; 1376():77-100. PubMed ID: 34725790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming.
    Fritz AL; Adil MM; Mao SR; Schaffer DV
    Mol Ther; 2015 May; 23(5):952-963. PubMed ID: 25666918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers.
    Gao X; Yang J; Tsang JC; Ooi J; Wu D; Liu P
    Stem Cell Reports; 2013; 1(2):183-97. PubMed ID: 24052952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells.
    Schneider RP; Garrobo I; Foronda M; Palacios JA; Marión RM; Flores I; Ortega S; Blasco MA
    Nat Commun; 2013; 4():1946. PubMed ID: 23735977
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and regulation of a stage-specific stem cell niche enriched by Nanog-positive spermatogonial stem cells in the mouse testis.
    Ventelä S; Mäkelä JA; Kulmala J; Westermarck J; Toppari J
    Stem Cells; 2012 May; 30(5):1008-20. PubMed ID: 22388986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells.
    Gao S; Tao L; Hou X; Xu Z; Liu W; Zhao K; Guo M; Wang H; Cai T; Tian J; Gao S; Chang G
    Stem Cell Res Ther; 2016 Mar; 7():40. PubMed ID: 26979597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induction of Expandable Adipose-Derived Mesenchymal Stem Cells from Aged Mesenchymal Stem Cells by a Synthetic Self-Replicating RNA.
    Miyagi-Shiohira C; Nakashima Y; Kobayashi N; Kitamura S; Saitoh I; Watanabe M; Noguchi H
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variation in mesodermal and hematopoietic potential of adult skin-derived induced pluripotent stem cell lines in mice.
    Inoue T; Kulkeaw K; Okayama S; Tani K; Sugiyama D
    Stem Cell Rev Rep; 2011 Nov; 7(4):958-68. PubMed ID: 21424235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
    Galat V; Galat Y; Perepitchka M; Jennings LJ; Iannaccone PM; Hendrix MJ
    Stem Cells Dev; 2016 Jul; 25(14):1060-72. PubMed ID: 27193052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oocyte-Specific Homeobox 1, Obox1, Facilitates Reprogramming by Promoting Mesenchymal-to-Epithelial Transition and Mitigating Cell Hyperproliferation.
    Wu L; Wu Y; Peng B; Hou Z; Dong Y; Chen K; Guo M; Li H; Chen X; Kou X; Zhao Y; Bi Y; Wang Y; Wang H; Le R; Kang L; Gao S
    Stem Cell Reports; 2017 Nov; 9(5):1692-1705. PubMed ID: 29033306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency.
    An J; Zheng Y; Dann CT
    Stem Cell Reports; 2017 Feb; 8(2):446-459. PubMed ID: 28065642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental epigenetic modifications and reprogramming-recalcitrant genes.
    Sakurada K
    Stem Cell Res; 2010 May; 4(3):157-64. PubMed ID: 20167552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chicken Induced Pluripotent Stem Cells: Establishment and Characterization.
    Fuet A; Pain B
    Methods Mol Biol; 2017; 1650():211-228. PubMed ID: 28809024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.
    Liu Q; Zhang RZ; Li D; Cheng S; Yang YH; Tian T; Pan XR
    Cell Reprogram; 2016 Apr; 18(2):67-77. PubMed ID: 27055628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stemness, fusion and renewal of hematopoietic and embryonic stem cells.
    Constantinescu S
    J Cell Mol Med; 2003; 7(2):103-12. PubMed ID: 12927049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.