These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19373453)

  • 21. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures.
    Kwon JY; Yang YS; Cheon SH; Nam HJ; Jin GH; Kim DI
    Biotechnol Bioeng; 2013 Sep; 110(9):2412-24. PubMed ID: 23568400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An actively mixed mini-bioreactor for protein production from suspended animal cells.
    Diao J; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.
    Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R
    Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a novel Wave Bioreactor cellbag for aerobic yeast cultivation.
    Mikola M; Seto J; Amanullah A
    Bioprocess Biosyst Eng; 2007 Jul; 30(4):231-41. PubMed ID: 17340094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical sensor enabled rocking T-flasks as novel upstream bioprocessing tools.
    Vallejos JR; Micheletti M; Brorson KA; Moreira AR; Rao G
    Biotechnol Bioeng; 2012 Sep; 109(9):2295-305. PubMed ID: 22473759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study of a ceramic microsparging aeration system in a pilot-scale animal cell culture.
    Nehring D; Czermak P; Vorlop J; Lübben H
    Biotechnol Prog; 2004; 20(6):1710-7. PubMed ID: 15575703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disposables in downstream processing.
    Gottschalk U
    Adv Biochem Eng Biotechnol; 2009; 115():171-83. PubMed ID: 19373450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational fluid dynamics analysis of mixing and gas-liquid mass transfer in wave bag bioreactor.
    Svay K; Urrea C; Shamlou PA; Zhang H
    Biotechnol Prog; 2020 Nov; 36(6):e3049. PubMed ID: 32681589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of mass transfer and mixing in rigid lab-scale disposable bioreactors at low power input levels.
    van Eikenhorst G; Thomassen YE; van der Pol LA; Bakker WA
    Biotechnol Prog; 2014; 30(6):1269-76. PubMed ID: 25139070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A case study in converting disposable process scouting devices into disposable bioreactors as a future bioprocessing tool.
    Vallejos JR; Uplekar S; da Silva JF; Brorson KA; Moreira AR; Rao G
    Biotechnol Bioeng; 2012 Nov; 109(11):2790-7. PubMed ID: 22549482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rocking Aspergillus: morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites.
    Kurt T; Marbà-Ardébol AM; Turan Z; Neubauer P; Junne S; Meyer V
    Microb Cell Fact; 2018 Aug; 17(1):128. PubMed ID: 30129427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures.
    Huang TK; McDonald KA
    Biotechnol Adv; 2012; 30(2):398-409. PubMed ID: 21846499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Configuration of bioreactors.
    Martens DE; van den End EJ; Streefland M
    Methods Mol Biol; 2014; 1104():285-311. PubMed ID: 24297423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study.
    Bareither R; Bargh N; Oakeshott R; Watts K; Pollard D
    Biotechnol Bioeng; 2013 Dec; 110(12):3126-38. PubMed ID: 23775295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport advances in disposable bioreactors for liver tissue engineering.
    Catapano G; Patzer JF; Gerlach JC
    Adv Biochem Eng Biotechnol; 2009; 115():117-43. PubMed ID: 19499208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 L scale.
    Hundt B; Best C; Schlawin N; Kassner H; Genzel Y; Reichl U
    Vaccine; 2007 May; 25(20):3987-95. PubMed ID: 17391818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes.
    Papagianni M; Mattey M; Kristiansen B
    Biotechnol Prog; 2003; 19(5):1498-504. PubMed ID: 14524711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.