These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19374495)

  • 1. Advancing neurosurgery with image-guided robotics.
    Pandya S; Motkoski JW; Serrano-Almeida C; Greer AD; Latour I; Sutherland GR
    J Neurosurg; 2009 Dec; 111(6):1141-9. PubMed ID: 19374495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging machines with microsurgery: clinical experience with neuroArm.
    Sutherland GR; Lama S; Gan LS; Wolfsberger S; Zareinia K
    J Neurosurg; 2013 Mar; 118(3):521-9. PubMed ID: 23240694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of neuroArm.
    Sutherland GR; Wolfsberger S; Lama S; Zarei-nia K
    Neurosurgery; 2013 Jan; 72 Suppl 1():27-32. PubMed ID: 23254809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward robot-assisted neurosurgical lasers.
    Motkoski JW; Yang FW; Lwu SH; Sutherland GR
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):892-8. PubMed ID: 23047855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-operative robotics: NeuroArm.
    Lang MJ; Greer AD; Sutherland GR
    Acta Neurochir Suppl; 2011; 109():231-6. PubMed ID: 20960348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Robotic surgery for brain tumors].
    Okudera H
    Nihon Rinsho; 2005 Sep; 63 Suppl 9():358-62. PubMed ID: 16201548
    [No Abstract]   [Full Text] [Related]  

  • 7. New microsurgical technique for intraparenchymal lesions of the brain: transcylinder approach.
    Ogura K; Tachibana E; Aoshima C; Sumitomo M
    Acta Neurochir (Wien); 2006 Jul; 148(7):779-85; discussion 785. PubMed ID: 16572277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data.
    Rasmussen IA; Lindseth F; Rygh OM; Berntsen EM; Selbekk T; Xu J; Nagelhus Hernes TA; Harg E; Håberg A; Unsgaard G
    Acta Neurochir (Wien); 2007; 149(4):365-78. PubMed ID: 17308976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing brain tumor resection. Midfield interventional MR imaging.
    Alexander E
    Neuroimaging Clin N Am; 2001 Nov; 11(4):659-72. PubMed ID: 11995421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Surgical robotics in neurosurgery].
    Haidegger T; Benyó Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From the microsurgical laboratory to the operating theatre.
    Yaşargil MG
    Acta Neurochir (Wien); 2005 May; 147(5):465-8. PubMed ID: 15821999
    [No Abstract]   [Full Text] [Related]  

  • 12. Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases.
    Roessler K; Ungersboeck K; Aichholzer M; Dietrich W; Czech T; Heimberger K; Matula C; Koos WT
    Minim Invasive Neurosurg; 1998 Jun; 41(2):53-7. PubMed ID: 9651910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics in neurosurgery.
    McBeth PB; Louw DF; Rizun PR; Sutherland GR
    Am J Surg; 2004 Oct; 188(4A Suppl):68S-75S. PubMed ID: 15476655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An image-guided magnetic resonance-compatible surgical robot.
    Sutherland GR; Latour I; Greer AD; Fielding T; Feil G; Newhook P
    Neurosurgery; 2008 Feb; 62(2):286-92; discussion 292-3. PubMed ID: 18382307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a completely robotized neurosurgical operating microscope.
    Kantelhardt SR; Finke M; Schweikard A; Giese A
    Neurosurgery; 2013 Jan; 72 Suppl 1():19-26. PubMed ID: 23254808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early experiences with a novel (robot hand) technique in the course of microneurosurgery.
    Csókay A; Valálik I; Jobbágy A
    Surg Neurol; 2009 Apr; 71(4):469-72. PubMed ID: 18617248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models.
    Morita A; Sora S; Mitsuishi M; Warisawa S; Suruman K; Asai D; Arata J; Baba S; Takahashi H; Mochizuki R; Kirino T
    J Neurosurg; 2005 Aug; 103(2):320-7. PubMed ID: 16175863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Applicability of the robot arm for microsurgical operations].
    Krapohl BD; Siemionow M; Zins JE
    Handchir Mikrochir Plast Chir; 1999 Sep; 31(5):333-8. PubMed ID: 10566135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.