BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19374915)

  • 1. Translocation of ricin across polarized human bronchial epithelial cells.
    Rushing SR; Saylor ML; Hale ML
    Toxicon; 2009 Aug; 54(2):184-91. PubMed ID: 19374915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toluene diisocyanate enhances human bronchial epithelial cells' permeability partly through the vascular endothelial growth factor pathway.
    Zhao H; Peng H; Cai SX; Li W; Zou F; Tong W
    Clin Exp Allergy; 2009 Oct; 39(10):1532-9. PubMed ID: 19624533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ricin toxicity and intracellular routing in tumoral HT-29 cells. II. Differential ricin toxicity from the apical and basolateral surfaces of differentiated HT-29 cells.
    Chazaud B; Muriel MP; Wantyghem J; Aubery M; Decastel M
    Exp Cell Res; 1995 Nov; 221(1):214-20. PubMed ID: 7589248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of culture conditions to develop an in vitro pulmonary permeability model.
    Geys J; Nemery B; Hoet PH
    Toxicol In Vitro; 2007 Oct; 21(7):1215-9. PubMed ID: 17629671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrin formation by wounded bronchial epithelial cell layers in vitro is essential for normal epithelial repair and independent of plasma proteins.
    Perrio MJ; Ewen D; Trevethick MA; Salmon GP; Shute JK
    Clin Exp Allergy; 2007 Nov; 37(11):1688-700. PubMed ID: 17892513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intracellular movement and cycling of ricin.
    McIntosh D; Timar J; Davies AJ
    Eur J Cell Biol; 1990 Jun; 52(1):77-86. PubMed ID: 2117534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model.
    Haghi M; Young PM; Traini D; Jaiswal R; Gong J; Bebawy M
    Drug Dev Ind Pharm; 2010 Oct; 36(10):1207-14. PubMed ID: 20374185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oropharyngeal aspiration of ricin as a lung challenge model for evaluation of the therapeutic index of antibodies against ricin A-chain for post-exposure treatment.
    Pratt TS; Pincus SH; Hale ML; Moreira AL; Roy CJ; Tchou-Wong KM
    Exp Lung Res; 2007; 33(8-9):459-81. PubMed ID: 17994372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel chimeric anti-ricin antibody C4C13 with neutralizing activity against ricin toxicity.
    Wang Y; Guo L; Zhao K; Chen J; Feng J; Sun Y; Li Y; Shen B
    Biotechnol Lett; 2007 Dec; 29(12):1811-6. PubMed ID: 17657413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication.
    Mantis NJ; McGuinness CR; Sonuyi O; Edwards G; Farrant SA
    Infect Immun; 2006 Jun; 74(6):3455-62. PubMed ID: 16714576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cells of epithelial lineage are present in blood, engraft the bronchial epithelium, and are increased in human lung transplantation.
    May LA; Kicic A; Rigby P; Heel K; Pullen TL; Crook M; Charles A; Banerjee B; Ravine D; Saxena A; Musk M; Stick SM; Chambers DC
    J Heart Lung Transplant; 2009 Jun; 28(6):550-7. PubMed ID: 19481014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study.
    Geys J; Coenegrachts L; Vercammen J; Engelborghs Y; Nemmar A; Nemery B; Hoet PH
    Toxicol Lett; 2006 Jan; 160(3):218-26. PubMed ID: 16137845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mouse model for ricin poisoning and for evaluating protective effects of antiricin antibodies.
    Beyer NH; Kogutowska E; Hansen JJ; Engelhart Illigen KE; Heegaard NH
    Clin Toxicol (Phila); 2009 Mar; 47(3):219-25. PubMed ID: 19274499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of anti-allergic drugs across the passage cultured human nasal epithelial cell monolayer.
    Lin H; Yoo JW; Roh HJ; Lee MK; Chung SJ; Shim CK; Kim DD
    Eur J Pharm Sci; 2005 Oct; 26(2):203-10. PubMed ID: 16087322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-Specific stem cell differentiation in an in vitro airway model.
    Prytherch Z; Job C; Marshall H; Oreffo V; Foster M; BéruBé K
    Macromol Biosci; 2011 Nov; 11(11):1467-77. PubMed ID: 21994115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immuno-histochemical detection of MRPs in human lung cells in culture.
    Torky AR; Stehfest E; Viehweger K; Taege C; Foth H
    Toxicology; 2005 Feb; 207(3):437-50. PubMed ID: 15664271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of gene transcripts associated with ricin tolerance in human RPMI 2650 cells.
    Wilkinson LJ; Duffield ML; Titball RW; Lindsay CD
    Toxicol In Vitro; 2007 Apr; 21(3):509-20. PubMed ID: 17166693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory gene expression in response to sub-lethal ricin exposure in Balb/c mice.
    David J; Wilkinson LJ; Griffiths GD
    Toxicology; 2009 Oct; 264(1-2):119-30. PubMed ID: 19682533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells.
    Rotoli BM; Bussolati O; Bianchi MG; Barilli A; Balasubramanian C; Bellucci S; Bergamaschi E
    Toxicol Lett; 2008 May; 178(2):95-102. PubMed ID: 18403140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High permeability of the anionic form restricts accumulation of indomethacin by cultured gastric surface epithelial cells exposed to low apical pH.
    Kavvada KM; Murray JG; Moore VA; Coombes AG; Hanson PJ
    Eur J Pharmacol; 2006 Nov; 549(1-3):41-9. PubMed ID: 16996496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.