These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19375152)

  • 1. The multi-annual carbon budget of a peat-covered catchment.
    Worrall F; Burt TP; Rowson JG; Warburton J; Adamson JK
    Sci Total Environ; 2009 Jun; 407(13):4084-94. PubMed ID: 19375152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon budget for a British upland peat catchment.
    Worrall F; Reed M; Warburton J; Burt T
    Sci Total Environ; 2003 Aug; 312(1-3):133-46. PubMed ID: 12873406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multi-annual nitrogen budget of a peat-covered catchment--changing from sink to source?
    Worrall F; Clay GD; Burt TP; Rose R
    Sci Total Environ; 2012 Sep; 433():178-88. PubMed ID: 22789818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands.
    Mander U; Lõhmus K; Teiter S; Mauring T; Nurk K; Augustin J
    Sci Total Environ; 2008 Oct; 404(2-3):343-53. PubMed ID: 18486194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.
    Chu H; Gottgens JF; Chen J; Sun G; Desai AR; Ouyang Z; Shao C; Czajkowski K
    Glob Chang Biol; 2015 Mar; 21(3):1165-81. PubMed ID: 25287051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.
    Yallop AR; Clutterbuck B
    Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.
    Yang H; Xing Y; Xie P; Ni L; Rong K
    Environ Pollut; 2008 Feb; 151(3):559-68. PubMed ID: 17664033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment.
    Dinsmore KJ; Billett MF; Dyson KE
    Glob Chang Biol; 2013 Jul; 19(7):2133-48. PubMed ID: 23568485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the role of environmental drivers in organic carbon export from a forested peat catchment.
    Ryder E; de Eyto E; Dillane M; Poole R; Jennings E
    Sci Total Environ; 2014 Aug; 490():28-36. PubMed ID: 24840277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.
    Stimson AG; Allott TEH; Boult S; Evans MG
    Sci Total Environ; 2017 Feb; 580():398-411. PubMed ID: 28012649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability.
    Campeau A; Bishop KH; Billett MF; Garnett MH; Laudon H; Leach JA; Nilsson MB; Öquist MG; Wallin MB
    Glob Chang Biol; 2017 Dec; 23(12):5523-5536. PubMed ID: 28712133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering the importance of lateral CO(2) transport from a temperate spruce forest.
    Fiedler S; Höll BS; Jungkunst HF
    Sci Total Environ; 2006 Sep; 368(2-3):909-15. PubMed ID: 16678240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolved organic carbon fluxes under bare soil.
    Mertens J; Vanderborght J; Kasteel R; Pütz T; Merckx R; Feyen J; Smolders E
    J Environ Qual; 2007; 36(2):597-606. PubMed ID: 17332264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can carbon offsetting pay for upland ecological restoration?
    Worrall F; Evans MG; Bonn A; Reed MS; Chapman D; Holden J
    Sci Total Environ; 2009 Dec; 408(1):26-36. PubMed ID: 19818993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evasion of CO2 from streams - the dominant component of the carbon export through the aquatic conduit in a boreal landscape.
    Wallin MB; Grabs T; Buffam I; Laudon H; Agren Å; Öquist MG; Bishop K
    Glob Chang Biol; 2013 Mar; 19(3):785-97. PubMed ID: 23504836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of recent climate change on carbon sequestration in peatland systems.
    Lunt PH; Fyfe RM; Tappin AD
    Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year.
    Arnone JA; Verburg PS; Johnson DW; Larsen JD; Jasoni RL; Lucchesi AJ; Batts CM; von Nagy C; Coulombe WG; Schorran DE; Buck PE; Braswell BH; Coleman JS; Sherry RA; Wallace LL; Luo Y; Schimel DS
    Nature; 2008 Sep; 455(7211):383-6. PubMed ID: 18800137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
    Moore S; Evans CD; Page SE; Garnett MH; Jones TG; Freeman C; Hooijer A; Wiltshire AJ; Limin SH; Gauci V
    Nature; 2013 Jan; 493(7434):660-3. PubMed ID: 23364745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition.
    Edokpa DA; Evans MG; Rothwell JJ
    Sci Total Environ; 2015 Nov; 532():711-22. PubMed ID: 26119385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon balance in an alpine steppe in the Qinghai-Tibet plateau.
    Pei ZY; Ouyang H; Zhou CP; Xu XL
    J Integr Plant Biol; 2009 May; 51(5):521-6. PubMed ID: 19508362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.