These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 19375260)
41. Physiological noise in human cerebellar fMRI. van der Zwaag W; Jorge J; Butticaz D; Gruetter R MAGMA; 2015 Oct; 28(5):485-92. PubMed ID: 25894812 [TBL] [Abstract][Full Text] [Related]
42. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach. Alekseichuk I; Diers K; Paulus W; Antal A Neuroimage; 2016 Oct; 140():110-7. PubMed ID: 26608246 [TBL] [Abstract][Full Text] [Related]
43. Detecting neuronal currents with MRI: a human study. Huang J Magn Reson Med; 2014 Feb; 71(2):756-62. PubMed ID: 23475847 [TBL] [Abstract][Full Text] [Related]
44. Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS). Scarpa F; Cutini S; Scatturin P; Dell'Acqua R; Sparacino G Opt Express; 2010 Dec; 18(25):26550-68. PubMed ID: 21165006 [TBL] [Abstract][Full Text] [Related]
45. Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli. Kim D; Livne T; Metcalf NV; Corbetta M; Shulman GL J Neurophysiol; 2020 Nov; 124(5):1343-1363. PubMed ID: 32965156 [TBL] [Abstract][Full Text] [Related]
46. Neural activity-induced modulation of BOLD poststimulus undershoot independent of the positive signal. Sadaghiani S; Uğurbil K; Uludağ K Magn Reson Imaging; 2009 Oct; 27(8):1030-8. PubMed ID: 19761930 [TBL] [Abstract][Full Text] [Related]
47. Investigating the consistency of brain activation using individual trial analysis of high-resolution fMRI in the human primary visual cortex. Nemani AK; Atkinson IC; Thulborn KR Neuroimage; 2009 Oct; 47(4):1417-24. PubMed ID: 19446644 [TBL] [Abstract][Full Text] [Related]
48. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Chang C; Glover GH Neuroimage; 2009 Oct; 47(4):1448-59. PubMed ID: 19446646 [TBL] [Abstract][Full Text] [Related]
49. Neuronal event detection in fMRI time series using iterative deconvolution techniques. Hernandez-Garcia L; Ulfarsson MO Magn Reson Imaging; 2011 Apr; 29(3):353-64. PubMed ID: 21232893 [TBL] [Abstract][Full Text] [Related]
50. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise. Harita S; Stroman PW Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492 [TBL] [Abstract][Full Text] [Related]
51. Sources of functional apparent diffusion coefficient changes investigated by diffusion-weighted spin-echo fMRI. Jin T; Zhao F; Kim SG Magn Reson Med; 2006 Dec; 56(6):1283-92. PubMed ID: 17051530 [TBL] [Abstract][Full Text] [Related]
52. Unsupervised physiological noise correction of functional magnetic resonance imaging data using phase and magnitude information (PREPAIR). Bancelin D; Bachrata B; Bollmann S; de Lima Cardoso P; Szomolanyi P; Trattnig S; Robinson SD Hum Brain Mapp; 2023 Feb; 44(3):1209-1226. PubMed ID: 36401844 [TBL] [Abstract][Full Text] [Related]
53. Spin-Echo Resting-State Functional Connectivity in High-Susceptibility Regions: Accuracy, Reliability, and the Impact of Physiological Noise. Khatamian YB; Golestani AM; Ragot DM; Chen JJ Brain Connect; 2016 May; 6(4):283-97. PubMed ID: 26842962 [TBL] [Abstract][Full Text] [Related]
54. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives]. Hoffmann MB; Kaule F; Grzeschik R; Behrens-Baumann W; Wolynski B Klin Monbl Augenheilkd; 2011 Jul; 228(7):613-20. PubMed ID: 20740397 [TBL] [Abstract][Full Text] [Related]
55. Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Zhang N; Zhu XH; Chen W Neuroimage; 2008 Nov; 43(2):204-12. PubMed ID: 18657623 [TBL] [Abstract][Full Text] [Related]
56. The BOLD signal response for fluctuating stimulation images. Sawada K; Sasaki T; Maeno M; Yanashima K; Magatani K Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3396-9. PubMed ID: 18002726 [TBL] [Abstract][Full Text] [Related]
57. Influence of dense-array EEG cap on fMRI signal. Luo Q; Glover GH Magn Reson Med; 2012 Sep; 68(3):807-15. PubMed ID: 22161695 [TBL] [Abstract][Full Text] [Related]
58. Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex. Anderson JS AJNR Am J Neuroradiol; 2008 Oct; 29(9):1722-9. PubMed ID: 18635612 [TBL] [Abstract][Full Text] [Related]
59. On the origin of respiratory artifacts in BOLD-EPI of the human brain. Windischberger C; Langenberger H; Sycha T; Tschernko EM; Fuchsjäger-Mayerl G; Schmetterer L; Moser E Magn Reson Imaging; 2002 Oct; 20(8):575-82. PubMed ID: 12467863 [TBL] [Abstract][Full Text] [Related]
60. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI. Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]