BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 19375414)

  • 1. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option.
    Hagedorn M; Peterson A; Mazur P; Kleinhans FW
    Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M; Eroğlu A; Toner M; Sadler KC
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of freezing effects on human microvascular-endothelial cells (HMEC).
    Berrada MS; Bischof JC
    Cryo Letters; 2001; 22(6):353-66. PubMed ID: 11788877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetry studies of intraembryonic freezing and cryoprotectant penetration in zebrafish (Danio rerio) embryos.
    Liu XH; Zhang T; Rawson DM
    J Exp Zool; 2001 Aug; 290(3):299-310. PubMed ID: 11479909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapidly cooled human sperm: no evidence of intracellular ice formation.
    Morris GJ
    Hum Reprod; 2006 Aug; 21(8):2075-83. PubMed ID: 16613884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs.
    Wang HS; Kang L
    Cryobiology; 2005 Oct; 51(2):220-9. PubMed ID: 16115620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages.
    Ruffing NA; Steponkus PL; Pitt RE; Parks JE
    Cryobiology; 1993 Dec; 30(6):562-80. PubMed ID: 8306705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory.
    Jin B; Seki S; Paredes E; Qiu J; Shi Y; Zhang Z; Ma C; Jiang S; Li J; Yuan F; Wang S; Shao X; Mazur P
    Cryobiology; 2016 Oct; 73(2):181-6. PubMed ID: 27481511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly cooled horse spermatozoa: loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation.
    Morris GJ; Faszer K; Green JE; Draper D; Grout BW; Fonseca F
    Theriogenology; 2007 Sep; 68(5):804-12. PubMed ID: 17645937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cryobiology of complex tissues].
    Vannereau H; Novakoviteh G; Carin M
    Contracept Fertil Sex; 1998; 26(7-8):573-7. PubMed ID: 9810134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures.
    Robles V; Barbosa V; Herráez MP; Martínez-Páramo S; Cancela ML
    Theriogenology; 2007 Jul; 68(2):284-9. PubMed ID: 17559920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Pacific oyster, Crassostrea gigas, oocytes in relation to intracellular ice formation.
    Salinas-Flores L; Adams SL; Wharton DA; Downes MF; Lim MH
    Cryobiology; 2008 Feb; 56(1):28-35. PubMed ID: 18045585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes.
    Guenther JF; Seki S; Kleinhans FW; Edashige K; Roberts DM; Mazur P
    Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on permeability of DMSO in embryos of red seabream (Pagrus major) by capillary electrophoresis.
    Lin F; Liu QH; Xiao ZZ; Ma DY; Xu SH; Xiao YS; Li J
    Cryo Letters; 2011; 32(4):339-48. PubMed ID: 22020413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular ice formation and growth in MCF-7 cancer cells.
    Yang G; Zhang A; Xu LX
    Cryobiology; 2011 Aug; 63(1):38-45. PubMed ID: 21536022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.