BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19375770)

  • 1. Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents.
    Poitras C; Fatisson J; Tufenkji N
    Water Res; 2009 Jun; 43(10):2631-8. PubMed ID: 19375770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst.
    Kang CD; Cao C; Lee J; Choi IS; Kim BW; Sim SJ
    Water Res; 2008 Mar; 42(6-7):1693-9. PubMed ID: 17988710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal.
    Poitras C; Tufenkji N
    Biosens Bioelectron; 2009 Mar; 24(7):2137-42. PubMed ID: 19118996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and potential use of a Cryptosporidium parvum virus (CPV) antigen for detecting C. parvum oocysts.
    Kniel KE; Higgins JA; Trout JM; Fayer R; Jenkins MC
    J Microbiol Methods; 2004 Aug; 58(2):189-95. PubMed ID: 15234516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor.
    Campbell GA; Mutharasan R
    Biosens Bioelectron; 2008 Feb; 23(7):1039-45. PubMed ID: 18054480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples.
    Angus SV; Kwon HJ; Yoon JY
    J Environ Monit; 2012 Dec; 14(12):3295-304. PubMed ID: 23152174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum.
    Lee LY; Ong SL; Hu JY; Ng WJ; Feng Y; Tan X; Wong SW
    Appl Environ Microbiol; 2004 Oct; 70(10):5732-6. PubMed ID: 15466507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Cryptosporidium parvum in buffer and in complex matrix using PEMC sensors at 5 oocysts mL(-1).
    Xu S; Mutharasan R
    Anal Chim Acta; 2010 Jun; 669(1-2):81-6. PubMed ID: 20510907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T; Arakaki A; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T
    Biotechnol Bioeng; 2007 Feb; 96(2):272-80. PubMed ID: 16917954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces.
    Byrd TL; Walz JY
    Langmuir; 2007 Jul; 23(14):7475-83. PubMed ID: 17555335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved electron microscopic technique for the immunolabeling of Cryptosporidium parvum oocysts.
    Jenkins MC; Murphy C; Trout J; Fayer R
    J Parasitol; 2006 Apr; 92(2):403-5. PubMed ID: 16729705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of lectins on Cryptosporidium parvum oocyst in vitro attachment to host cells.
    Stein B; Stover L; Gillem A; Winters K; Leet JH; Chauret C
    J Parasitol; 2006 Feb; 92(1):1-9. PubMed ID: 16629306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Cryptosporidium parvum in natural soil matrices and soil solutions using qPCR.
    Koken E; Darnault CJ; Jacobson AR; Powelson D; Hendrickson W
    J Microbiol Methods; 2013 Feb; 92(2):135-44. PubMed ID: 23201484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and test for long-term stability of a synthetic standard for a quantitative Cryptosporidium parvum LightCycler PCR assay.
    Filkorn-Kaiser R; Botzenhart K; Wiedenmann A
    J Water Health; 2005 Mar; 3(1):15-25. PubMed ID: 15952449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection system of Cryptosporidium parvum oocysts by brackish water benthic shellfish (Corbicula japonica) as a biological indicator in river water.
    Izumi T; Yagita K; Endo T; Ohyama T
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):559-66. PubMed ID: 16998637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oocysts of Cryptosporidium parvum and model sand surfaces in aqueous solutions: an atomic force microscope (AFM) study.
    Considine RF; Dixon DR; Drummond CJ
    Water Res; 2002 Aug; 36(14):3421-8. PubMed ID: 12230187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters.
    Sunderland D; Graczyk TK; Tamang L; Breysse PN
    Water Res; 2007 Aug; 41(15):3483-9. PubMed ID: 17583766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE.
    Yao C; Qi Y; Zhao Y; Xiang Y; Chen Q; Fu W
    Biosens Bioelectron; 2009 Apr; 24(8):2499-503. PubMed ID: 19188059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIS-based analysis of the fate of waste-related pathogens Cryptosporidium parvum, Giardia lamblia and Escherichia coli in a tropical canal network.
    Diallo MB; Anceno AJ; Tawatsupa B; Tripathi NK; Wangsuphachart V; Shipin OV
    J Water Health; 2009 Mar; 7(1):133-43. PubMed ID: 18957782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.